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ABSTRACT 

The general problem of the propagation of a plane harmonic 

electromagnetic wave through an ionized gas is considered, 

including collisions, some form of electron density distribu- 

tion, and a magnetostatically induced anisotropy. The pres- 

ent state of the art is examined first, including an outline of 

the WKB approximation and a summary of electron density 

distributions for which complete wave theory solutions exist. 

Then, specific analytical solutions and appropriate numerical 

calculations are derived to evaluate the effect of the applied 

magnetic field on propagation. A detailed parametric investi- 

gation, several exemplary flight conditions, and a possible 

experimental shock-tube program are analyzed assuming a 

homogeneous plasma. Preliminary estimates of the effects 

of plasma inhomogeneities and nonuniformities in the mag- 

netic field on propagation are  obtained. 

/! 
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SECTION I 

INTRODUCTION 

The problem of electromagnetic wave propagation in an anisotropic 

medium has been considered in several diverse fields of study.    Initial 

interest centered about investigations in crystal optics  (see Born and Wolf ). 

More recently,   the introduction of anisotropic ferrite media in microwave 

device applications  resulted in further treatment of the subject.    Plasma 

physicists have employed microwave beams to produce diffuse plasmas and 

for diagnostic purposes.     They have contributed extensively to the micro- 
be 

scopic theory of propagation in magnetoactive    plasmas in such related fields 

as plasma di?.gnostics,   astrophysics,  and controlled nuclear reactions. 

Considerable work has been done in the field of ionic radio-wave propagation, 

the so-called magneto-ionic theory.    The primary interest there is the study 

of reflection of electromagnetic waves from the inhomogeneous  ionosphere in 

the presence of a constant magnetic field.    Of interest also is the use of 

radio waves as a probing tool to examine the physics of the ionosphere itself. 

With the advent of space exploration,  the problem of communication with 

vehicles through the plasma sheath or wake has arisen,   and the application of 

magnetic fields has been suggested as a possible solution. 

The present study is formulated in terms of ionized gas parameters, 

using a macroscopic approach in which the medium is characterized by 

simple constitutive relations.    Although the emphasis,   therefore,   is in the 

field of plasma physics,   many of the general considerations and methods of 

solution may be appropriate to the research work involving solids mentioned 

above or,   for example,  to the study of acoustical wave propagation in 

inhomogeneous  fluids . 

' x "— 
The use of this term is  convenient to indicate the presence of an applied 

magnetic field. 
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The basic equations governing the propagation of electromagnetic 

waves in inhomogeneous,  nonuniform,  magnetoactive plasmas are derived 

in the next section.    In Section III,   a homogeneous plasma is considered and 

the essential elements of ray theory are reviewed including the limiting 

condition as prescribed by the WKB approximation.     The general inhomoge- 

neous plasma problem is examined in Section IV,   and a summary of electron 

density distributions for which there are full wave solutions is presented. 

Appropriate analytical solutions and numerical calculations are obtained in 

Sections V,  VI,   and VII,   which provide the basis for the present preliminary 

evaluation of the effect of an applied magnetic field on propagation.    Detailed 

quantitative (parametric) results are  obtained in Section V,   assuming a 

homogeneous plasma slab and normal incidence,   normal applied uniform 

magnetic field.    Specific exemplary flight conditions are examined also on 

this basis as is the initial consideration of a proposed experimental 

shock-tube program.    The more realistic inhomogeneous,  nonuniform plasma 

problem is analyzed in Sections VI and VII. 
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SECTION II 

BASIC EQUATIONS 

Maxwell's point formulation of the electromagnetic field equations is 
2 

assumed to be valid for an inhomogeneous magnetoactive medium (Stratton   ): 

— 9R' -*       3D'      "*" 7XE'=-i2. , VXH'=-Ü + J' , (1,2) 
8t 9t 

V D'  = p , VB' = 0        , (3,4) 

where E' and H' are the electric and magnetic field intensities,   respectively, 

D' is the electric displacement,   B1 is the magnetic induction,   and p and J' 

are the charge and current densities,   respectively (rationalized mks units 

are used).    The continuity of charge condition relates p and J1: 

V • Ji  + fLE = 0 (5) 
at 

Two of these equations  are not independent,   however,   as can be shown in 

the following way: 

V(vxE') = 0=-i(V' B') 
ot 

V • (V x H') = 0 = i- (v ■ D') +  V • J'  = |- (v ■ D'  -   p) 
ot ot 

Hence, we may regard (1), (2), and (5) as the basic independent equations 

and consider (3) nnd (4) as initial conditions that are valid at all times, if 

valid initially.     The  resultant system of seven independent scalar equations 
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in 16 scalar unknowns is made determinate by introducing the macroscopic 

properties of the medium which empirically relate E',   D',   and J' to H1 and E': 

B' = (xH1 , D'  =  lE' , T> =  <rE' . (6,7,8) 

The inductive capacities \x and e   and the electrical conductivity cr are,   in the 

most general cases,  time- and space-dependent tensors that characterize the 

electromagnetic properties of the medium. 

For a slightly ionized gas,  the inductive capacities are,  for all  practical 

purposes,  the same as the free space values ^.-. and € ..    If we neglect the 

motion of the more massive ions under the influence of microwave irradiation, 

then J' is given by [rewriting (6) and (7) for completeness] : 

? = Nev*' , B' = fxQH' , D' = «0E'        ,        (9,10,11) 

where v' is the electron drift velocity, N is the number density of electrons, 

and e is the charge. We will assume harmonic time dependence of the form 

exp(icjt) for all time-varying vectors.    Thus,  for any such quantity V: 

V'(x,y,z,t) = V(x,y,z)e1Ut , (12) 

where to is the angular wave frequency.    It will be convenient to introduce a 

modified magnetic field intensity: 

1/2 

7|.(JJ)  a   . „3, 

1 /2 where (n-/e_) = c^u. is the free space impedance and c_ is the velocity of 

light in vacuo. 
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The electrical conductivity and,   therefore,   the relationship between 

J and E for the plasma,   is determined from the equation of motion for an 

average electron in some region of space in which is established,  in general, 

a steady,   spatially dependent biasing magnetic field of induction B_: 

dv'  J m + moj   v' 
dt c 

e(E'  + v' X BQ) (14) 

where m is the electron mass,   OJ    is the average  electron collision frequency, 

and the force exerted by the magnetic field of the wave is neglected relative 

to the force E'e.     Assuming harmonic time dependence,   we  see,   using (9), 

that: 

J = 
it f.iüX 

U(U Y2) 
-U2E + Y2(E • TB)TB 4  iYU(ExtB) (15) 

'here i_  is the unit vector  (B_ □ U B_i._) whose direction cosines  relative to 
U  o 

the  Cartesian coordinate  system are  1 ,   m,   and n,   the angular plasma 

frequency CJ   ,   and the angular cyclotron frequency at which the electrons 

gyrate due to the externally applied magnetic field u>     are  given by: 

Ne 
€0m 

eB, 

B 
(16a) 

i 

B 
OJ 

z = — U 1  - iZ      , (16b) 

and the vector  Y acts  in the  opposite direction to B_  (since e  < 0) where 

Y -   |Y|  =  (|e|Bn/moj).     Expressing (15) in matrix notation   J   =   crE exhibits 

the general character of the electrical conductivity for a magnetoactive 

• 5- 



medium.    Substituting Eqs.   (10,   11,   13,   15,   16) into Maxwell's Eqs.   (1) 

through (4),  we obtain the following basic system: 

A _► 
VXE = -inQ// , V X H = inQKE , (17, 18) 

E = -£- , V •   H =0        , (19,20) 
0 

where the matrix K has components K..(i,j = x,y,z), 

l-A(U2-i2Y2) A(-inYU+<mY4) A(imYU+inY2) 

K=j    A(inYU+*mY2) 1  - A(U2 - m2Y2) A(-ii YU + mnY2)   [ (/I) 

A(-imYU+«nY2) A(ii YU + mnY2) 1  - A(U2 - n2Y2) 

2        2 A = X/U(U    - Y  ),   n. = u/c.  = 2ir/Xn is the free-space wave propagation 

constant,  > _ the free-space wavelength,   and    H is given by Eq.   (13).     The 

complete system of differential equations for the wave motion is expressed 

by the two vector equations (17) and (18) in E and // where K is given by (21). 

It is noteworthy that the electromagnetic properties of the medium are 

completely characterized by (21).     The orientation of B„ is arbitrary,   and, 

since X,   U,   and Y may be space dependent,   Eq.   (21) will apply for the 

general case of an inhomogeneous,  nonuniform,   magnetoactive plasma. 
... 34 Additional discussion is  given,   in detail,  by Ginzburg    and by Budden. 
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SECTION III 

PROPAGATION IN HOMOGENEOUS,   UNIFORM, 
MAGNETOACTIVE PLASMAS 

Eliminating   //from (17) and (18),   we obtain the following wave-like 

equation for   E: 

V X V X E =  V(V-E)   -  V^E = n^KE , (22) 

A 
where the matrix   K   is given in (21).     Consider now the solutions to this equa- 

tion which represent possible plane waves in an infinite homogeneous , uniform, 
A 

magnetoactive plasma.    Since   K   is constant,   we may assume characteristic 

solutions of the form: 

, ..     -mnn • r 
E=E(1)e       ° , (23) 

where   n   is  the  so-called wave normal (i. e. ,   normal to the plane wave front) 

which identifies the direction of propagation,   E       is the constant amplitude, 

and   r   is the  radius vector.     In the gcner?J case,   for a real frequency to,   the 

wave normal is  a complex vector uf the form   n  = p -  iq,   where   p   and  q  are 

real.     We will restrict our attention to the case of homogeneous plane waves, 

however,   SO that the planes of equal phase and amplitude coincide and the 

wave normal may be written in the  simplified form: 

n  r (Q  -  ip)t , (24) 

where   t    is  a unit vector  (real) in the propagation direction. 

-7. 
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Substituting (23) and (24) into (22),   we obtain: 

2 —      ■*      ■—( 11 * -ft 11 
(a - ißpt X (t X E*   ') = -KE1  '        , (25) 

which represents a system of three homogeneous algebraic equations for the 

three components of E      .     The existence of a nontrivial solution of this sys- 

tem requires that the determinant of the coefficients vanish,   from which one 

may obtain the required expression for the quantity (a - iß)        It would appear 

on first examination of (25) that the resultant equation should be a cubic in 

(a - iß)   .     If,   however,   we take the dot product of (25) with  t,   the left-hand 

side will vanish (thus,  the projection of the vector   KE       in the propagation 
A 

direction is zero).    Since  K  is not a function of (a - iß),   it follows that there 

exists a linear relation between the three components of E       in the wave 
2 

which must be independent of (a - iß)   .     Without going through the details of 

writing out the full expression,   we see,   therefore,   that the aforementioned 

condition for the existence of a nontrivial solution of the system (25),   or, 

equivalently,   the existence of solutions to (22) of the form (23),   leads to a 

quadratic relation for the quantity (a - iß)   . 

It is clear from the preceding remarks that the simplest way of deriving 

the desired expression for   n*, 

n*  = a  -  iß , (26) 

is to choose a coordinate system so that the positive z-axis is in the direction 

of   t.     The z-component equation of (25) will not involve   n*,   and a quadratic 

relation for n*     will follow with a minimum of algebraic manipulation.     There 

is no loss of generality using this  effort-saving simplification,   because the 

properties of the medium should not depend on the choice of coordinate system 

Further,   for an arbitrary orientation of the magnetic field,   the y-axis can be 

selected perpendicular to   Bn.     Therefore,  we will assume that   Bn   is in the 
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x-z plane at an angle  y   to the positive z-axis.     The quadratic equation 

defining   n*     will now be derived from (25) on the basis of the  preceding 

remarks. 

The three scalar equations (25) for the components of E        reduce to: 

|-n*2 + K      |E(1) + K     E(1) + K     E(1)  = 0 , (27a) \ xx J   x xy    y xz    z 

K     E(1)+(-n*2+K     \E(1)
+K     E(1)  = 0 , (27b) yx   x \ yy I   y yz    z 

K     E(1) + K     E(1) + K     E(1) = 0 (27c) zx   x zy    y zz    z 

The vanishing of the determinant of the coefficients of  E leads to the fol- 

lowing quadratic equation in n*   : 

[1  - A(U2  - Y2)  - AY2 sin2 v] n*4 

+ {-2(1   -  AU2)[1   - A(U2  - Y2)]   + AY2  sin2 y}n*2 

+ [(1   - AU2)2 - A2U2Y2][l  - A(U2 - Y2)]   = 0 . (28) 

Rearranging terms     substituting   A = X/U (U     - Y   ),   and multiplying by 

U (U2  - Y2),   we obtain: 

(U -  X)[U(n*2 -   1) + X] 2 + [ -Y2(U  - X)  - XY2 sin2 y] (n=:=2  -   l)2 

-  XY2 sin2 y(n-2 -  1) = 0 

It' we now make the substitution: 

-Y2(U  -  X)  - -Y2(U - X) sin2 y - Y2(U - X)  cos2  y 



2 2 in the second term and divide by (U - X)(n*    -  1)   ,   we obtain a quadratic 

equation for the quantity  U + X/(n*    -   1),  from which it follows that: 

n*    = 1 - X 

U y*/2(u - x) W^ U - X) + Y 
TTT7T (29) 

where   Y_  is the transverse component of the vector   Y,   and   Y.    is the 

longitudinal component; i. e. , 

YT   = Y cos v Y„ = Y sin Y (30) 

Equation (29) is the classical Appleton-Hartree formula for the refractive 

index of a homogeneous,   uniform,   magnetoactive medium,   n* = a - iß.    Each 
, 2 

value of  n*     represents a pair of waves traveling both in the positive and the 
/   •2\1 /2 negative z-directions.     It is customary to take   n* = + In*    ) for both waves, 

as determined by the positive and negative signs in (29),   in which case the 

general solution of (22) becomes: 

,,,     -in„n:'-z 
?      ?(1) ° E = E       e + E<2> 

mnn-'-z 
(31) 

where the first term represents a wave traveling in the positive z-direction 

and the second term represents a wave traveling in the negative z-direction 

(the real numbers  a   and   ß   are taken to be positive).     The physical meaning 

of the two possible waves in the medium corresponding to  n*   is described 

best in terms of the polarization of the waves,   i. e. ,   the relationship between 

the  components   E     and   E     with time.     Tn general,   both waves are elliptically 

polarized.     It will be shown subsequently that,   when   Y_, = 0,   the plus  sign 

(usually referred to as the "ordinary" wave)  represents a circularly polarized 

wave whose electric field vector is rotating clockwise with time,   looking along 
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the field,   i. e. ,   in the positive z-direction,  while the minus sign ("extra- 

ordinary" wave) denotes a counterclockwise rotation. 

The electromagnetic properties of the medium are completely charac- 

terized by the complex index of refraction.    Specific calculations have been 

made for a wide range of values of the three frequency ratios (assuming 

Y_ = 0) in the present study.    Rather than presenting these extensive numer- 

ical results,   we will discuss the general propagation properties of the plasma 

quantitatively in Section V by means of the more  meaningful consideration of 

a particular boundary value problem associated with a homogeneous plasma 

slab.     A very thorough discussion of the general properties of the Appleton- 
5 6 4 

Hartree equation (29) is given by  Ratcliffe ,     Booker,     Budden,     and 

Ginzburg.       The reader's attention is also directed to the work of 
7 

Shkarofsky    in which a variable electron collision frequency is considered. 

Equation (29) was derived above for  our discussion of plane wave 

propagation in an infinite,   homogeneous,   magnetoactive medium where the 

direction of propagation is  arbitrary.     It was  convenient to choose the posi- 

tive z-axis in the direction of propagation for this purpose.     Subsequently, 

however,   we will be concerned with the propagation of plane waves from one 

medium to another across an abrupt plane boundary.     It is clearly no longer 

convenient to use this approach,   therefore,   since the direction of propagation 

and,   hence,   the coordinate  system would be different in each medium.     Apply- 

ing a  simple  rotation of the axes,   we arrive at the fixed coordinate system 

shown in Fig.    1.     A plane wave  is  obliquely incident on the free  space-plasma 

interface   z  = 0   with its wave  normal   in   the   x-z    plane at an angle   9    to the 

positive   z-axis,   i       is at an angle   5   from the positive   z-axis,   and the wave 
2 . normal in the medium (z > 0)  is  at an angle   8.     Equation (29) for   n*      remains 

unchanged; however,   the components of   Y   given in (30) are  expressed now in 

terms of the angle   v  = 6  - 9. 

■ 11. 



Snell's law,  which results from the requirement that the tangential 

components of  E  be continuous at  z =0,   states that: 

sin 9. = n* sin 9 (32) 

where  n*   and  9   may refer to either transmitted wave.     The solutions in the 

plasma region given by (23) are now of the form: 

EtO) aKi) E  a El   '  exp[-in0(a - i(3)(x sin 9 + z cos 9)] = El   ' exp[-inQ(x sin 9   + qz)] 

(33) 

q = n* cos 9 (34) 

The initial problem of determining  n* and 9  by solving (29) and (32) simul- 

taneously is greatly simplified using the relation (34) introduced by Booker. 

Substituting (33) into (22) and proceeding as before,  we obtain Booker's 

quartic for  q: 

8 

4 3 2 F(q)   = Cjq    +  c2q    +  c3q    +  c4q + c5  = 0 

Cj  = U(U2 - Y2) + X(n2Y2 - U2) 

,2,„2 

c2 = 2 In SXY 

2,,       „2   2   .   „2,2, 

c4 =  -2C2 In SXY2 

c5 = (U - X)(C2U - X)2 - C2Y2(C2U - X) - 12S2C2XY2 

2U(U - X)(C   U - X) + 2Y1CU - X) + XY   (1  - C   n    + S^l  )    , > (35) 

■12- 



where   S = sin 9      C = cos 9 ,   and use is made of the fact that the component 
2  ,   ..2,-1/2 of  Y   in the direction of the wave normal is  Y.    = Y (IS + qn)(q    + S ) 

The quartic has,   in general,  four distinct roots corresponding to a pair of 

waves traveling in the positive z-direction and a pair traveling in the direc- 

tion of negative   z,   the former being of present interest.     The two values of 

q  for these waves then can be used to determine the corresponding values of 

n*   and   9   from the following relations,   obtained from Eqs.   (32) and (34): 

n*     = q    + S tan 9 (36) 

There are three cases for which (35) reduces to a quadratic  equation in  q   . 

If   9T -■ 0 (normal incidence),   the coefficients   c,   and   c.   vanish and the solu- I v ' 2 4 
tions for   q  = n*   are those given by the Appleton-Hartree equation (29).     The 

remaining two cases are for   B-   assumed to lie in the   y-z   and  x-y planes, 
4 respectively,   (see Budden   )  and are not of current interest. 

Whenever   n:':   is varying locally,   a reflection process  is taking place so 

that the forward- and backward-traveling waves are in general coupled.     This 

process is very weak in a "slowly changing"  medium,   where the electron 

density does not vary significantly with position,   in which case the coupling 

may be neglected,   except in the neighborhood of certain reflection points at 

which coupling is particularly strong.    Such reflection points are found by 

setting   dq/dz  = 0 (Mitra   ).     This brief description is  the basis for the so- 

called WKB approximate solutions for the electromagnetic fields at nearly 

all points in a "slowly changing"  medium.     Both the  mathematical and physical 

consequences of this procedure will be clarified considerably in the next sec- 

tion when a specific problem is formulated and discussed.     It is apparent, 

however, that propagation in homogeneous plasmas is  governed by the well- 

known laws of geometrical optics,   i.e.,   ray theory.     As we have indicated, 

in general terms,   approximate  solutions  can be obtained at nearly all points 

■13- 



in a slowly varying medium by assuming that the laws of geometrical optics 

apply at each point.    In this sense the WKB solution is often referred to as 

a mathematical expression of ray theory.    Several additional references of 

interest are Gershman,  Ginzburg,  and Denisov,       Pitteway,       Mitra, 
13       . „       . 14, 15 Pisareva,       and Haselgrove. 
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SECTION IV 

PROPAGATION IN INHOMOGENEOUS,   UNIFORM, 
MAGNETOACTIVE PLASMAS 

Although our primary purpose is to review the problem of electro- 

magnetic wave propagation in an inhomogeneous anisotropic (in particular 

a magnetoactive) plasma,   it will be useful to consider also the corresponding 

isotropic case.    For an isotropic medium  K.. = K6..,  where   K  is now a 
ij ij 

scalar point function and   6..   is the Kronecker delta,   the following two equa- 

tions can readily be derived from (17) and (18): 

VZE - v(V •   E) + nQK(aj,7)E = 0 , (37) 

V2/7f+  l—  [VK(w,r) X (V X /T|)] + n^KU 7)~fi\= 0 , (38) 1     K(w, r) ' ° I 

where (20) is used in obtaining the latter result.     Only one of these equations 

need be solved, because when either E   or   //  is known,   the  remaining field 

intensity can be found from the appropriate field equation,   (17) or  (18). 

Although (37) is the equation moft often used for this purpose,   at times  (38) 

is more convenient,   depending on the nature of the problem,   as will be noted 

later in this discussion.     The general analysis of propagation in inhomogeneous 

media can proceed in a number of directions,   particularly in view of the 

variety of assumptions for the function  K(co, r)  which are possible.     We will 

restrict our attention to plane-layered or stratified media,   in which case 

K =  K(u), 7.).     The propagation of waves in media whose properties are constant 

on spherical (or cylindrical) surfaces is  similar in many  respects to that in a 

plane-layered medium as observed by Ginzburg     (Sections  34 and  36). 
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Consider now the propagation of a plane wave across an abrupt,   plane 

free space-plasma or plasma-plasma boundary,   z = 0,   with its wave normal 

in the x-z plane (at an angle   6.  to the positive z-axis in the region  z < 0). 

The applied magnetic field vector (Fig.   1) will,   in general,   lie in the x-z 

plane and is assumed constant.    Since the plasma is stratified (in the region 

z > 0) so that its properties are functions only of z,   all field quantities will 

contain the factor   exp(-ing x sin 9.) by virtue of Snell's law.    We will omit 

this factor in the present discussion in the same way that the time factor 

exp(icot) has been omitted.    Thus,   in the present formulation, d/dx- -in. sin 9., 

3/9y = 0,   and   9/3z = d/dz. 

When the applied magnetic field is zero,   two independent problems are 

of particular interest.     If the electric field is parallel to the plane of incidence 

(i. e. ,   the x-z plane),   the waves are  said to be vertically polarized.    It is 

convenient in this instance to work with (38) since the magnetic field vector 

will have only one component   //   : 

H"-®QH'   +4*H y=0        , (39) 

where q2(z) = n*2(z) - S2 = C2 - X/U; S = sin 9rJ C =cos 9.. Few analytical 

solutions of (39) are available (see Wüster and For sterling, 10 Budden, and 

Ginzburg   ).     The second problem arises when the magnetic field is parallel 

to the plane of incidence.    Such waves often are said to be horizontally 

polarized since the electric field vector will have only one component  E     an 

using  (37),   we find: 

Ey + no(c2-Tj)V° • (4° 

For normal incidence,   C =   1   and (37) becomes: 

E»+nJ(l-§)E = 0       , 
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where   E  can be taken to mean either of the components   E     or   E   ,   the r x y 
corresponding components of  //  being   //      or//   ,   respectively. 

For an inhomogeneous magnetoactive medium,   Eq.   (37) takes on the 

more complicated form,   already noted in (22): 

V2E - VV •   E + n^K(co, r)f = 0 (42) 

where   K{u>, r)   is given in (21).     A considerable  simplification is derived from 
A A 

the assumption of a plane-layered medium in that   K = K(LL>, Z).    Even with the 

further assumption that the plane waves are normally incident on the layer, 

we obtain two second-order equations involving both of the unknowns   E     and 

E   .     This  system is equivalent to a fourth-order equation for either   E     or 

E   ,   in contrast to the second-order governing equation (41) for the corre- 

sponding isotropic layer problem.     Exact solutions of the  system of second- 

order equations or equivalent fourth-order equation have been found only for 
A 

specific forms of   K. 

A detailed account of the general problem outlined in the preceding 

paragraph is contained in what ionospheric  investigators refer to as coupling 
4 

theory (see,   for example,   Budden,      Chapters  18, 19,20).     The single fourth- 

order equation referred to above has received little attention because of its 
1 7 complexity.    Fo'rsterling       introduced two new variables for the case of 

normal incidence and proceeded to obtain a pair of coupled  second-order 

equations that are more readily amenable to analysis.     This work was 
1   Q 

extended by Clcmmow and Heading       to include oblique  incidence.     Making a 

change of dependent variables  in the  original equations (17) and (18),   they 

derived a new set of four first-order equations that can be  solved using 

several computational schemes or combined to form the more general pair of 

coupled second-order equations.    Another pair of equations was used by 
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Gershman,   Ginzburg,   and Denisov      for the case of normal incidence with the 

magnetic field applied in the x-z plane.    This formulation is particularly 

useful and,  furthermore,   is appropriate to principal problems of interest in 

this study.    When 6 = 0 or TT/2 (Fig.   1),   the coupled system may be rigorously 

separated into two independent second-order equations.     Both cases are of 

practical significance,   particularly the former,   and their solutions may be 

used in perturbation analyses for values of 6 near zero and tr/2.     The basic 

equations are introduced below; the present preliminary study of propagation 

through inhomogeneous plasmas is based upon them. 

For the case of normal ''ncidence with B-. in the x-z plane,  the general 

equations (17),   (18),  and (21) may be reduced to the following system of 

equations: 

F"  + n^K2F    = -injTBF. r 0   -    r 0      i 

F» + njicfo  = in2
0BFr 

(43) 

G    = -— F' n0     r 
G    = —— F' 
' n0     * 

(44) 

where: 

K2 =  1  - X
[

Y
T

/2
-
(U
'

X)(UTY
L

)
] 

* UY^ - (U - X)(u2 - Y2^) 
(45a) 

B 
XY^/2 

UY^ - (U - X)(u2 - Y^j 
(45b) 
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F    = E    + iE . Fj  = E    - iE , (46) r        x y I        x y 

G    = H    + iB .        G, - -//    + ill . (47) r x y i x y 

Two coupled second-order equations (43) specify the wave functions  F     and 

F..     The functions   G     and  G.   can be obtained from (44),   after (43) has been 

solved;  then  E   ,    E     and   H   ,    H     are obtained from (46) and (47),  respectively. x        y x        y r * 
Note that for a homogeneous medium,   assuming  solutions of the form 

F     =   F'1'   exp(-in   n*z),   F,   =  ¥y>   exp(-ir>   n*z)  propagating in the positive r r U+ x. x. U- .j. ,j. 
z-direction results in two homogeneous algebraic equations for  F        and  F.    . 

Setting the determinant of the coefficients equal to zero,   we obtain the 

Appleton-Hartree equation (29) by solving for  n*     in terms of  K,   and  B. 

The fact that   B  vanishes identically when   Y_, = 0 (i.e. , 6 = 0) allows us 

to obtain exact solutions for a variety of electron spatial distributions.    In 

this case,   there is no coupling and (43) reduce to the following two equations 

for the propagation of the right- and left-handed circularly polarized waves: 

Fr + 4 (J   "  V-^)Fr - ° 

Fi+no(! -xrrT-)Fi = ° 

(48) 

If we let: 

«^-(U-YJ-1        ,        mi.(u+YL)"1        , (49) 

then both Eqs.   (48) can be written in the form: 

F" + np(l   - mX)F = 0 , (50) 
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while both Eqs.   (44) can be written: 

G =  - — F' . (51) n n0 

One might comment at this point about the nature of the polarization of 

the two waves propagating in a magnetoactive medium.    Here we assume that 

the amplitudes and phase constants of  E'    and E'    are known and determine the 

locus of   |E' I  =   IE1     + E'     I in the z = constant plane,   where the time 

dependence has been reintroduced by means of the prime in accordance with 

Eq.   (12).    Eliminating the periodic factor between the expressions for the 

two components,  we obtain,   in general,   an ellipse in the x-y plane for the 

locus of the vector whose components are E1    and   E1 .     The wave is  said to x y 
be elliptically polarized in this case.    When the amplitudes of the rectangular 

components are equal in magnitude and their phases differ by   (2k + 1)TT/2, 

k = 0,   ±1,   ±2,   . . . ,   the polarization ellipse degenerates into a circle and the 

wave is said to be circularly polarized.    It is customary to describe as right- 

handed circular polarization a clockwise rotation of the electric vector when 

viewed along the field,   i.e. ,   in the direction of propagation.    Left-handed 

circular polarization denotes a corresponding counterclockwise rotation.    If 

E'    and  E'    have the same phase,   the wave is linearly polarized; i.e.,   the 

locus of  E1   in the x-y plant reduces to a straight line.     The wave polarization 

p" =  E1 /E'    is a complex number which may be conveniently introduced to show 

how the transverse components of  E  vary with time.     If  p~ is real,  for 

example,    E'    and   E'    have the same phase and the wave is linearly polarized. 

If "p = ±i   the polarization is circular,   the minus sign identifying a clockwise 

rotation of the electric vector,   i.e.,   right-handed circular polarization.    If  p" 

is complex,   the polarization is elliptical.    In the present problem (Yrp = 0),   if 

we  consider the   F1    wave,   then   F«   being independent of   F     may be taken to 

be zero and E'   = iE' .    Hence,   p" =  -i   and the wave   F'   = E1   + iE'   is risht- x y r r x y ö 

handed circularly polarized.     By the same token,   F'„  = E'   - iE'   would have it- ; i x y 
left-handed circular polarization. 

-20- 



I 

The mathematical  similarity of Eqs.   (40),   (41),   and (50) is quite 

apparent.    An equation of this same form appears in acoustics.    Indeed it 

appears generally in the theory of wave propagation,   another classical 

example of note being the Schroedinger wave equation for one-dimensional 

motion in quantum mechanics.     It is,   in fact,   a second-order linear,   homo- 

geneous,   ordinary differential equation with variable coefficients and arises 

often in mathematical physics.     The generalized Lame equation (see 
1 9 Whittaker and Watson     ) encompasses a large class of such equations,   and 

by a suitable treatment of the  singularities one  can arrive at the equations of 

Mathieu,   Legendre,   Bessel,   Weber,   Stokes,   etc.    Since no solution can be 

written in terms of known functions for an arbitrary functional form of the 

index of refraction,   particular cases in which this can be done acquire great 

interest.    Such  solutions  can be  obtained when the propagation equation is 

reducible to one of the aforementioned standard forms.    In general,  when this 

is not the case,   it is necessary to introduce the WKB approximation,   when 

applicable,   seek asymptotic solutions,   or employ numerical methods.    Solu- 

tions may be directly obtained when the WKB approximation is valid.     This 

procedure is briefly  reviewed,   therefore,   at the end of the  section.     Expansion 

procedures have been employed successfully in a number of instances while 

high-speed computing machines may be used to implement the several numeri- 

cal techniques available.     More  specific  reference to these approximate pro- 

cedures will be made following the discussion of the WKB method. 

In the following  summary we will review the known exact solutions for 

the cases of:    (i) horizontally polarized waves,   oblique incidence,   no magnetic 

field [ Eq.   (40)]; (ii) normal incidence,   arbitrary polarization [Eq.   (41)]; and 

(iii) circularly polarized waves,   normal incidence,   normal uniform applied 

magnetic field [Eq.   (50)].     The primary purpose of the  review is  to outline 

the solutions for the wave forms propagating in inhomogeneous plasmas.     The 

determination of reflection and transmission coefficients will depend then on 

the nature of the  specific  boundary value problems of interest.     This will 

involve the solutions for the wave forms propagating in each medium, 

characterized by its  index ol  refraction,   and the  requirement that F,   for 
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example,   and  F'   [in view of (51)] be continuous at the interface that 

separates two media.    If the inhomogeneous medium (z >  0) extends to 

infinity,   it is necessary to disregard the waves that propagate in the negative 

z-direction determined from the asymptotic behavior of the solution for 

large   z.     This boundary condition is based on the physical reason that no 

source of energy exists at infinity.    Reference will also be made in the 

summary to detailed solutions of boundary value problems which have been 

obtained. 

Exact solutions of the propagation problems described above have been 

obtained for various assumed functional forms of the index of refraction itself 

as well as separately for  X(z) with  Z = constant and,   in a few cases,   Z(z) 

with X = constant.    In general,   the utility of these formal solutions is limited 

by the difficulty in abstracting numerical results since the arguments and/or 

orders of the special functions involved are complex numbers.    Considerable 

information can be obtained,   however,  from the limiting forms of the solution 

for small and large values of the arguments.    Although extensive quantitative 

results also can be obtained to any desired accuracy by solving the equation 

numerically,   analytical expressions are particularly useful,   if available,  for 

the general analysis of propagation in inhomogeneous plasmas.    Further,   it 

should be remarked that although a surprisingly large number of exact solu- 

tions have been derived,   a detailed quantitative analysis of the reflection and 

transmission coefficients and of their specific dependence on the physical 

parameters of the problem is given in only a few papers.    Recent interest in 

transmission problems arising in space programs and laboratory plasma 

studies has resulted in a number of papers which provide such information 

with varying amounts of detail.     There is often no reference in these papers 

to previously obtained general solutions for the inhomogeneous plasma and 

the corresponding related,   if not equivalent,  boundary value problem.    This 

is due,   in part,   to the fact that many of these solutions were presented in the 

magneto-ionic literature.    Indeed,   our present purpose is to review the 

various known solutions for possible use in several different fields.    In this 
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regard,   it is recognized that the appropriate geometry may differ markedly 

for different applications.     In ionospheric work,   for example,  propagation 

across an inhomogeneous layer separating free space and a homogeneous 

medium is analyzed v/ith principle emphasis given to the study of reflection. 

In the plasma physics applications noted above,  both bounding regions are 

often assumed to be free space and both reflection and transmission are of 

interest. 

The function w(z) will be used to represent the unknowns   E   ,   E,    or   F 
y 

in Eqs.   (40),   (41),   and (50),   respectively.    Hence: 

w" + n^qZw = 0 , qZ(z) = n*Z(z) - S2 = CZ  - mX        , (52) 

where   m   is defined in Eq.   (49),   either with or without an applied magnetic 

field,   and  C = 1 (normal incidence) in the magnetoactive case.     The inhomo- 

geneous plasma  solutions,   therefore,   will apply to all three cases on this 

basis.     Reflection and transmission coefficients (referred to as   R  and   T, 

respectively,   in the outline) are also applicable to each problem even though 

the  reference work may have been concerned with one case in particular. 

For this purpose,   it is  convenient to assume that the incident wave is linearly 

polarized along the x-axis.     Unless otherwise stated Z  is taken to be constant. 

1. Linear:    X(z) = a(z  - z„). 

2 2/3 2 
Substitution,   £ ~  -C^n./am)        [l  - (am/C   )(z - zn)] >   results in 

Stokes1  equation,   d  w/d£,     =  £w.    General solution expressed in terms of Airy 

functions,   w = c(1)Cti(?) + C*2'S|i(§).    Alternatively,   let (2/3)£3/Z - it,, 

w =  L,        v,   to obtain Bessel functions for the  solution, 

v = c *    Ji /»(!>)+ c*  'J_ j/«(£).     The basic inhomogeneous plasma solution 

appears  in a number of  references along with expressions for   R   and   T  for 

the  simplest boundary value problem of interest defined  in Fig.   2a.     Problems 

2b and 2.c were considered by Hartree       for   Y = 0,  with particular attention 

given to   R.     Recently,   detailed calculations  of   R   and   T  have been made for 

2b through 2e by Albini and Jahr.      assuming   Y = 0,   C =   1.     Hermann 
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considered 2a for   Y = 0,   C =  1 and derived a useful approximate procedure. 
23 

Taylor      determined  R  for 2b using a formulation based on the transmission 

line equations,   but detailed numerical results were not presented. 

2. Square law:    X(z) s a(z - zfl)   . 

Substitution,   £ = (4n0am)       (z - ZQ),  k +■ 1/2 = (4n0am)~       n.C   , 

2 2 2 results in Weber's equation,   d  w/d£    + (k + 1/2  - i   )w =  0,   and the general 

solution,  w = c      D, (£) + cl   'D_,    .(£).    Problem 2f has been considered by 

Hartree, 24   Wilkes, 25 and Rydbeck. 26 

¥      _      W 1        /   T7 I V     a   If       I       \      a 

'0 3. Parabolic:    X(z) = Xj [l  - (z - z   )2/z2],    |s-x.|<i, 

Substitution,   ^ = (^n.mX./zJ       (z - z.), 

22-1/222 
k +  1/2 = (-4nnmX./z.) nn^-'     " mX, ),   results in Weber's equation (ibid. ). 

Problem 2g was considered by Rydbeck^? and Pfister.    ° 

4. Exponential:    X(z) = exp(az). 

Substitution,   £ = (2n,,m       /a)exp[(az + itr)/2],   k = 2in»C/a, 

2   2 2 2 2 results in Bessel's equation,   £  d  w/d£    + £dw/d£ + (£     - k   )w = 0,   and the 

general solution,   w = c      J, (£) + c      J  , (£).     This problem has been examined 
29 by a number of authors.     Stanley   7 obtained the solution for ionospheric 

propagation as a limiting case of Epstein's       method.     The following distribu- 

tion is more appropriate to many applications in plasma physics and is 

considered later in this  report:    X(z) = X      + (X_ - X     )exp(-az),     z >   0(a >  0). r oo 0 oo       r 

5. Trigonometric:    X(z) = (X ,/2)[l  + cos (TT/Z   )(z - z   )], 

|z - z. | _ z   .    Change of independent variable gives  Mathieu's equation; 

however,   a numerical solution of 2h can be used conveniently to compute 

values of   |R|,   as noted by Budden.       Unlike (3),   X'(z) is continuous at 

[z   - z. I   = z   .     This  is found to be useful in ionospheric  applications. 
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6. Hypergeometric:    X(z) =  1   - m     iS 

* ,1 

' + €     + e-(e- + l)"2 X 

2   2 [<c2 - (l)(e5 + 1) + €3]},e = (z/a) + ß,   ij = -(c -  L)4/4nJa 

2        2  2 ■(a - b)   /4nt
Qa  ,   6 3 =  (a b-c+l)(a+b-c-  l)/4n2a2. 

Genera] solution is expressed in terms of hypergeometric 

functions.    A number of interesting distributions,  known as Epstein profiles, 
30 arc included in this case.     The details are given ir. Epstein's       classical 

paper for an isotropic medium.     Of particular note also is the useful 

procedure for obtaining reflection and transmission coefficients for an 

Epstein layer.     The following special cases are generally singled out: 

a. 

b. 

X(g) 

x(€) 

m'^C2  -   l/2(«2 + C2) - (l/2)(«2 - C2) tanh [(z - ZJJ/ZQ]) 

■(l/4m)€      sech     [ (z   -  z   )/2a] . 

7. Inverse square law:    X(z) = z 

1/2 Transformation,   w = z       v,   results in Bessel's equation and the 

general solution,   w = c      z        J   (n   Cz) + c      z        J     (n.Cz), p = [(l/4)+nnmJ 

Taylor       examined this problem,   assuming the  incident wave to be propagating 

from z  =  +00.     The asymptotic  expansion of   J   is used to satisfy the boundary 

condition at  +co   and to determine   R.     The more customary problem in which 

the wave is  incident at  z =  0  propagating into the plasma region  z >  0, 

where   X(z) -   (z  + a)      ,   a  >   0,   is also of interest.     The inhomogeneous 

plasma solution given above may be modified  readily in this case and the 

appropriate boundary conditions may be applied. 
k 

8. Polynomial:    X(z) =  2J, az 

i = 0   l 

General infinite series solution for   E   (z)  was formally obtained 

by Taylor       with primary attention focused on  B.    Specific consideration 

given to quadratic,   X(z) = a.z + a,z   . 
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9. Periodic:   X(z) = X(z + a). 

Expand  X into a Fourier series and seek Fourier series solution 

for w.    Vassiliadis^-* formulated the general procedure for determining the 

coefficients in the series for the electric field and examined specifically 

X = (X./2)(l + cos 2-rrz/a),   but did not consider a particular boundary value 

problem.    His simple variational approach in obtaining solutions is also of 

interest. 

2 2 i 10. Generalized power law (normal incidence): n*   (z) = a   (1 + az)   , 

£ £ -2.     The general solution can be written in the form,   F = (1 + az )       v, 

where  v   is a Bessel function of order  p  and argument  £,   p    - {£ + 2)     , 

£ = 2nn(ap/a)(l + az) .    The appropriate form of the general solution 

will depend on the boundary value problem.     To satisfy the condition at 

z = +CO  in the semi-infinite case (assuming the imaginary part of a   to be 

negative),   the assumption  £ >   -2   would require the use of the Hankel function 

of the second kind while   i  <  -2  would require the Bessel function of the first 

kind of order p ■  -(£ +2)     .A number of such solutions (for  £ = -1,   the 

expression for  n*     may contain an additive constant) have appeared in the 

ionospheric literature (see Ginzburg   ). 

11. Exceptional case,  £ 2:   n*2(z) = c(b + z)~2. 

This case is of particular interest because the solution can be 

expressed in terms of elementary functions,   F = c      (b + z)   ' + c      (b + z)  *, 
2      1/2 r.   , =  1/2 ± (1/4 - n_C)        .    Ginzburg points out the following solution to 

problem 2i:    R = (i/2 )(nQa + ß)" !,   ß = [ (nQa)2  -  1/4 ] 1/2,  nQa >   1/2.     In the 

WKB limit,   n   a »   1   and   ß % na  such that  R = i/4n_a = iX   /8TTQ = 

(i\n/8Tr)(d/dz)(n*   )|   _   ,   evaluated in the plasma. 
0' 

12. n:;:   (z) = (az + b)/(cz + d)  ,  normal incidence. 

34 The general solution was obtained by Penico 

F = (cz + d){c(1,fli[-D"2/3(az + b)/(cz + d)] + c (2)$ i[ -D_2/ 3(az + b)/cz + d)]} , 

where   D = ad - be.    No particular boundary value problem was considered. 
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13. Variable collision frequency,   constant X. 

A few solutions have been obtained.    In each case,   Z  was assumed 

to be a decreasing function of  z,   and very little quantitative analysis of the 

effect on propagation is presented. 

a. (-1) power law:    Z(z) = a/z. 

Change of independent variable results in Gauss'  equation 

with the general solution in terms of confluent hyper- 

geometric functions.    Wilkes       examined this problem 

briefly. 

b. Exponential:    Z(z) = a exp(bz)(b <  0). 

This distribution has been derived from the Epstein profiles. 

The exact solutions  summarized above were used by the referenced 

authors to analyze propagation in inhomogeneous plasmas for various 

applications.    Often these analyses were intended to provide a general 

examination cf the problem and only limited quantitative information was 

obtained.    As we have already noted,   even if the assumed form of the index 

of refraction is appropriate to a specific problem of interest,   detailed 

numerical results are difficult to obtain from the formal solutions without 

resorting to the use of high-speed computers.     In addition,   it may be 

necessary to contend with more general forms of the index of refraction. 

Various approximate procedures and analyses,   which apply to these situations 

as well as to more  complicated propagation equations than (52),   will be 

discussed briefly in the  remainder of this section. 

The WKB analysis is a particularly useful means of obtaining approxi- 

mate solutions.     To demonstrate the mathematical procedure,   as well as 

complete the discussion of the physical significance given in the preceding 

section,   we  shall now consider the WKB analysis of Eq.   (52).     The  substitution 

w - exp(JVdz) gives  rise  to a nonlinear Riccati equation for  v(z).    Assuming 
7 

that   q  (z)   is a siowly varying function,   we can derive the following 
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approximation to the general solution of (52): 

(1)   -1/2    •'no/ldz        (2)  -!/2    'no/I-** 
= c      q e + c      q e w = c       q (53) 

valid over an interval for which: 

_i li/aL\    -X 2 4l 2] " , - nQ       \q   / 2q 
«   1 (54) 

The corresponding solution for G,  for example,  would be obtained from (51). 

The "slowly varying" character of the plasma properties and the so-called 

reflection points are formally specified by (54) in that  q'   and  q"   must be 

sufficiently small while  q   cannot be too small. 

The WKB solution (53) can be employed as a mathematical expression 

of ray theory in the following way:    The governing equations for w  and  u 

[where the function  u(z)  represents   H   ,   H,   or  G   corresponding to the values 

E   ,   E,   and  F  for  w] arc obtained from (17) and (18): 

w' = -n.u (55,56) 

Separate   w  and  u   into two parts,   w - w       + w        and  u = u       + u      ,   the 

first traveling in the positive z-direction,   the second,   in the negative 

z-direction.    Using the characteristic exponential form of the solution for a 
U At t A /KA\ * 0) 0)        (2) (2) homogeneous medium for  u,   we reduce (So) to  u        - lqw      ,   u       = -lqw 

Substituting these expressions into (55),   we obtain two coupled second-order 

equations in w        and  w      .     The first approximation to the solution of this 

system neglects the coupling,  and (53) follows from the resultant two inde- 

pendent equations for  w        and  w      .    Whenever the index of refraction is 

varying locally,   a reflection process is taking place in which one wave can 

generate some of the other as shown by the coupling in the two equations for 
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W        and  w      .     The physical processes described at the conclusion of 

Section III are thereby clarified mathematically,   and the re sultant formal 

solution and limitation are expressed by Eqs.   (53) and (54),   respectively. 

It should be noted that the coupling process referred to in this discussion is 

between the waves (either   F     or   F.   in the magnetoactive case) that are 

propagating in the positive and negative z-directions.     This is quite apart 

from the  so-called coupling theory in magneto-ionics between the  right- 

and left-hand waves  propagating  in one direction.     The  solution of (50) for   F 

and  F,   separately or of the more complicated Eqs.   (43),   in which both waves 

are coupled,   can be  obtained by means  of the WKB approximation, if applicable. 

The WKB analysis described above adequately provides the mathematical and 

physical considerations  required in this  study.     More general presentations 
3 

of this classical subject are  readily available in the literature  (see Ginzburg, 

for example). 

The WKB method and the related phase integral method which applies  in 
4 

the vicinity of reflection points (see  Budden,      Chapter 20,   for example) have 

been employed in the analysis of a variety of problems and applications.     The 

numerical evaluation of such solutions or,   as we have previously noted,   of 

existing exact solutions has been considerably simplified by  the advent of high- 

speed computers.     Indeed,   in this way the  solution of even more general 

propagation problems has been realized,   although analytical expressions and 
4 

their inherent advantages are not provided.     Budden    outlines the general 

principles underlying the computational procedure for integrating the ordinary 

differential equations that govern the  reflection of a plane  radio wave from a 

horizontally stratified (magnetoactive) ionosphere.     The numerical analysis  of 

boundary value problems of present interest is considered in several mathe- 

matics  references.     In the following discussion,    reference  is made  to  several 

papers in which specific  calculation procedures are  set forth.     The principal 

purpose of this discussion is to take note  of analyses  of Eqs.   (40),   (41),   or 

(50) for more general forms of the index of refraction than were considered 

above as well as work which has been done in connection with Eq.   (39). 
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36 

Following this,   brief consideration will be given to several approximate 

mathematical procedures which,   along with the WKB method,   have been used 

to analyze related but somewhat more general propagation problems. 

35 Tyras and Held       considered the problem of normal incidence into a 

stratified,   lossy,   magnetoactive plasma that is assumed to consist of a 

number of homogeneous layers of arbitrary thickness.    No particular pattern 

for the electron density and collision frequency variations is assumed.    Both 

the cases   5 = 0  and   6 ■ W 2   are examined,   and the  results are left in general 

form,   suitable for high-speed computer calculations.     Once programmed, 

numerical results can be obtained quickly.    A representative model of a 

re-entry type of inhomogeneous plasma was assumed by Harley and Tyras" 

who used this numerical procedure to make illustrative transmission calcula- 

tions.     The primary purpose in using a numerical approach is to obtain 

detailed quantitative information for a specific problem including complicated 

variations of  N(z)  and  u>  (z).     The general effect of the several parameters 

of the problem on transmission is not shown due to the limited number of 

cases.    It is found,   however,   that the best improvement in transmission is 

obtained when the magnetic field is applied in the direction of propagation (as 

would be expected) and the incident wave is circularly polarized. 

Several methods have been proposed for solving the general problem of 

plane wave propagation through a plane-layered medium.    Reference was made 
37 above (see also Levy,        for example) to detailed analyses in which the plasma 

was assumed to consist of a stack of homogeneous layers.    In this case,  the 

well-known matrix method or sandwich formulas can be used.     The problem 

can also be formulated as an integral equation and approximate solutions 

obtained by iteration.     Variational techniques have been derived,   and the 

Riccati equation formulation has been considered.     It would appear to this 

author,   however,   that the differential equations are suitable for standard 

numerical analysis procedures when extensive quantitative results are desired. 

Thus,   the field intensity can be obtained by step-by-step numerical integration 

from which the reflection and transmission coefficients are readily determined. 
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3 8 Richmond,        for example,   outlined this technique both for problems of 

normal and oblique incidence (B    = 0).    Although he considered inhomogeneous, 

dielectric,   radomes (the application is itself worth mentioning in this review), 

the detailed procedure clearly is applicable to the present problem of lossy- 

plasmas.     Excellent agreement between approximate and exact solutions was 

obtained for the assumptions of constant,   linear,   and exponential variations 
39 

in the properties of the medium.    Klein,   et al. ,        treated this same problem 

for the case of a semi-infinite plasma.     The normal incidence problem was 

solved by numerical integration in the region of rapid variation of electron 

density and by the WKB method outside this region.    Computations were made 

for a large number of cases ■where the electron density distribution was 

assumed to be  exponential,   for the  sake of convenience.    A numerical pro- 

cedure was employed to solve the problem of oblique incidence  (provided the 

incident wave is not too close to normal incidence) and calculations were made 

assuming   Z   and  \     small.     It should be remarked that this analysis was not 

restricted to the problem of horizontal polarization only. 

We have discussed at some length in this  section the problem of finding 

solutions to Eq.   (52) and,   as a  result,   to a number of propagation problems 

of interest.     For certain forms of the function  q   (z),   (52) can be transformed 

into one of the classical equations of mathematical physics,   and exact solutions 

were  said to have been obtained in the  sense that they were expressible in 

terms of known functions.    One might well refer to the general theory of 

series solutions of (52),   in terms of the behavior of  q   (z),   which includes 

these  special functions,   to formalize the mathematical analysis.     The 

numerical analysis of this  equation for the   same  or more complicated forms 

of the function is also exact in that any desired accuracy can be obtained for 

the solution without restricting the parameters of the problem.    No analytical 

expression would be available.     By the   same  token,   more general problems 

than (52) could,   in principle,   also be solved numerically.     The over-all 

evaluation and interpretation of an even greater amount of data and the  inherent 

difficulty of the appropriate equations would limit this approach to restrictive 
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cases of specific interest.    The WKB and phase integral methods have been 

employed to obtain approximate solutions for more general problems of 

interest.    Perturbation solutions of Eq.   (43) have been examined for values 

of  5  which are close to   0   or  TT/2 (see Ginzburg   ).    From the literature on 

coupling theory,   we find that solutions of the Försterling equations have been 

obtained by successive approximations (see,   for example,   Gibbons and 
40 41 42 Nertney ).    Budden and Clemmow       used the formulation proposed by 

18 
Clemmow and Heading       to obtain solutions;   in particular,   the system of 

first-order equations was derived for the cases of normal incidence,   oblique 

magnetic field and oblique incidence,   normal magnetic field and approximate 
43 solutions obtained assuming the coupling terms small.     Recently,   Cohen 

extended coupling theory to nonuniform,   plane-layered,   magnetoactive media. 

WKB solutions were obtained for the two limiting cases of negligible and 

strong coupling,   as defined by Försterling,   assuming that X,   Y,   Z «   1. 

Note that solutions often can be obtained by appropriately restricting the 

range of the three characteristic frequency ratios.    Several interesting 
44  45 46 47 

examples of such analyses are,   Heading,      '        Poverlein,        Wilkes,        and 
48 Heading and Whipple. The references noted in this paragraph illustrate, 

in a rather abbreviated manner,   procedures used and results obtained for 

more general propagation problems than (52).     We have focused our primary 

attention,   in this  report,   on those problems which are governed by Eq.   (52). 
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SECTION V 

THE EFFECT OF AN APPLIED MAGNETIC FIELD ON PROPAGATION 
THROUGH A HOMOGENEOUS PLASMA SLAB 

The initial quantitative treatment of the effect of an applied magnetic 

field on propagation in re-entry communication problems has been made by 

various authors using the  simplified model of a homogeneous plasma.     An 

indication of this  effect may be obtained from the  complex index of refraction 

as was noted in the paragraph following Eq.   (31).     Some results were ob- 

tained on this basis  in the early investigation of Bachynski,   Shkarofsky,   and 
49   50 Johnston, for example.     A somewhat better  estimate of the problem can 

be obtained from the consideration of propagation across a single interface. 

Numerical  results were obtained for this  semi-infinite case assuming normal 

incidence and normal applied field by,   for example,   Bachynski,   Johnston, 

and Shkarofsky,        Fante,        and Hodara. French,   Cloutier,   and 
54 Bachynski       studied  some general aspects  of the problem with the magnetic 

field both parallel and normal to the propagation direction.     Their observa- 

tions on the existence of very low-frequency "windows" due to the ion cyclo- 

tron mode  represent   a   possible application which is  still to be  explored and 
55 

merits additional consideration.    Graf and Bachynski       included in their 

analysis the  effect of the orientation of B_ and the polarization of the incident 
0 

wave. 

Additional results of a similar nature have been published both in 

company reports and in journals.     In this section,   we  shall consider a homo- 

geneous plasma slab,   assuming the incident wave and applied magnetic  field 

to be normal to the  slab.     Detailed parametric calculations were made to 

determine the combined effect of Y,   X,   Z,   and L/\    on transmission. 

Specific  exemplary flight conditions were examined on this basis also,   as was 

the initial  consideration of a proposed experimental  shock-tube program. 
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A.     General Solution and Discussion of Parametric Results 

Consider a homogeneous plasma slab of thickness L separating the free 

space regions z < 0 and z > L.     A linearly polarized (say,   along the x-axis) 

plane wave is normally incident on the abrupt free space-plasma boundary 

z = 0,   and a uniform magnetic field is applied in the direction of propagation. 

The solution to the governing equation (50) for the propagation of both the 

right- and left-handed circularly polarized waves in the plasma region 

0 < z < L is given by: 

,,,     -in_n*z ,.,     in„n*z , ,-. 
F(z) = c(3)e      ° +c(4)e    ° , n* = (1  - mX)1/2 .     (57) 

In the free space regions z < 0 and z > L,   respectively: 

P = c<"e"in»%c'2'.'"°Z       . F=e<5>.      °' .        ,58,59, 

Continuity of F and F' [in view of (51)] at the two interfaces z = 0 and z = L 

leads to four equations for the amplitudes c        through c        from which the 

following expressions for the reflection and transmission coefficients can be 

derived : 

2 2 
(2)      (n*     -   1) exp(-in   n*L) + ( 1  -  n*   ) exp(in  n*L) 

R=£7T) =  2 ~ 2 "  - <60> 
cx (n* + 1)    exp(in n*L) - (n* -  1)    exp(-in n*L) 

(5)                                         4n* exp(innL) 
T = %x = 2 U- z         . (61) 

c (n* +  1)    exp(in0n-L) -  (n* -   1)     exp(-inQn*L) 

Separate results are obtained for the right- and left-hand wavf s,   using the 

appropriate value of n*.     Evaluating the  real part of the complex Poynting 
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vector in the free space regions z > L and z < 0,   we obtain the following 

expressions for the ratio of the transmitted and reflected energy to the 

incident energy: 

T=I(|Tr|2+|T/) , <R = ^(iRr|2+ I*/) • (62,63) 

A detailed calculation of the  reflection and transmission coefficients 

(magnitude and phase) for both waves has been made covering a wide range of 

the three frequency ratios and the ratio L/X   .     We will be interested prima- 

rily in transmission for the parametric analysis of the problem in this  sub- 

section.     The degradation in transmitted energy: 

dbT =  10 log10 eT , (64) 

was obtained for L/\    =  0. 5,    1,   2,   4 with 0. 01 < Z < 1,   0. 64 < X £ 400,   and 

0 S. Y £ 100.     From the graphs of db_ versus Y (Figs.   3 and 4 are included 

for illustrative purposes),   we can determine useful crossplots of X versus Y 

at constant values of dbT,   say,   -15,   -10,   and  -5,   with Z and L/X    as 

parameters.     The dependence of dbT  on the applied magnetic field,   which 

will,   of course,  be affected by the values of the parameters X,   Z,   and L/X.., 

can be observed first in Fig.   3a.     It is immediately apparent that when X is 

of order one (in particular,   note X =   1. 21,   1. 44,   2. 25,   and,   to a lesser 

extent,   4) dbT is strongly dependent on Y.     This is indicative of the significant 

improvement in transmission that can be derived for relatively small values 

of Y.     The dependence is much less pronounced for larger values of X, 

especially as the magnitude of db„ is decreased.    Qualitatively similar 

results are  shown in Fig.   4a; however,   it is clear that the increase in  Z 

generally decreases the favorable effect of Y.     These observations will be 

discussed in greater detail below. 

The principal factors  that were  introduced above can be conveniently 

examined in some detail from the constant dbT curves of X versus  Y shown in 
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Figs.   5 through 16.     To elaborate further on the previous general 

observations,  we first consider Figs.   8,   9,   and 10 for L/X.. =  1.     In the 

latter figure (Z =   1) for X =  1.44; db„ = -15,   -10,   and -5 is obtained when 

Y = 0. 95,   1. 6,   and 2. 75,   respectively.     With telemetry frequencies 

(f = 240 Mc), field strengths of the order of several hundred gauss are involved, 

and even in the microwave region (say f =  1 kMc),   the maximum value of 

1000 gauss corresponding to 5 db is still quite practical.     Note that a 68-per- 

cent increase in field strength is required to improve transmission from 15 

to  10 db,   while an additional increase of 72 percent would result in 5 db.     As 

one would expect,   larger values of Y are required when the electron density 

of the plasma is increased.     Thus,   for X =  100,   corresponding values of 

Y =  10. 5,   16,   and 41 are obtained.     The magnetic field strengths are an 

order of magnitude larger than in the preceding example,   a maximum of 

14, 60O gauss being needed to obtain 5 db for the microwave application. 

Although a 56-percent increase in Y will reduce the loss from  15 db to  10,   a 

further increase of 256 percent would be required to go from 10 to 5 db. 

(Corresponding values of 83 and 326 percent are obtained when X = 400. ) 

Decreasing the collision frequency by an order of magnitude to Z = 0. 1 

(Fig.   9) resulted in a reduction of the magnetic field required by as much as 

a factor of 3.     Although the required magnetic field generally is   still lower 

for Z = 0. 01 (Fig.   8),   the resonant conditions are quite pronounced in this 

case,   and the preceding trends are  substantially modified in certain instances. 

Increasing the slab thickness would,   of course,   degrade the transmitted 

signal.     A uniform increase in Y over the above results is obtained at 

L/Kn = 4,   for Z =   1,   as shown in Fig.   16.     The combined effect of the several 

parameters is complicated by the aforementioned resonant conditions in this 

case for Z = 0. 1 and 0. 01; detailed results are given in Figs.    15 and 14, 

respectively.    In Figs.   5,   6,   and 7 WX-n = 0. 5 is considered,   while,   to a 

lesser extent,   WX-n = 2 is considered in Figs.   11,   12,   and  13. 

A substantial improvement in transmission can be derived,   in many 

cases,   through the use of relatively small magnetic fields.     Clearly,   as we 
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have  seen,   this depends on the values  of L/X«,   X,   Z,   and  f involved.     Of 

particular  significance,   however,   is the benefit  still  to be derived from the 

application of reasonable fields if one accepts as great as  10 to 20 db degra- 

dation in the transmitted signal,   this in contrast to the  requirement of an 

order of magnitude larger field for the  same condition when near complete 

transmission is sought (as was done in a number of early rough estimates). 

This is due to the fact that the variation of db„ with Y is considerably more 

gradual for lower values of dbT ,   particularly when X > >  1.     In this  regard, 

it should be observed that particular attention must be given to such effects 

as inhomogeneities and nonuniformities if improved estimates of dbT are to 

be obtained since the difference in the  resultant prediction of the  required 

field may be significant. 

B.     Evaluation of Several Re-entry Applications 

The homogeneous plasma slab boundary value problem outlined above 

was used also to estimate transmission in several exemplary re-entry 

situations.     The effect of an applied magnetic field is determined thereby for 

particular applications of interest.     In the first case,   a 10-degree half-angle 

cone was considered at zero angle of attack with the flight conditions  shown 

in Fig.    17.     An equilibrium boundary layer analysis was made to determine 

the maximum enthalpy and temperature,   from which the plasma properties 

were obtained.     We computed the boundary layer or slab thickness using the 

inviscid flow properties,   assuming the actual cone wall temperature to be 

1500   K and the axial length,   11  feet.     The  results are shown in Fig.    18. 

Despite the fact that the plasma is highly overdense in most of the cases, 

transmission is obtained due to the correspondingly small values of L/X„ 

involved.     The determination of transmission for each flight condition is 

greatly dependent on this "skin-depth"  effect. 

Before discussing the present results,   a  reference level of acceptable 

transmission must be established.     Since this value is often difficult to 

ascertain,   even for current applications which are well along in the develop- 

ment phase,   it will be necessary to base our  remarks on several possible 

• 37- 

l 
I 



assumed values.     We shall consider below the telemetry frequency, 

f = 240 Mc,   assuming re-entry velocities of 26, 000 fps (Fig.   19) and 23, 600 

fps (Fig.   20) and the microwave frequency,   f a 3 kMc,   with u = 26, 000 fps 

(Fig.   21).     If 10 db degradation in transmitted energy is acceptable,   no 

magnetic field is required in the second case (Fig.   20) since the maximum 

loss is 9. 75 db at 150, 000 feet.    If,   however,   a maximum of 5 db is allowed, 

then "blackout"  should occur at both 100,000 feet and 150, 000 feet.    Although 

the  150, 000-foot condition is more critical than the 100, 000 with no magnetic 

field,   we should take note of the particularly strong dependence of dbT on the 

applied magnetic field in the former case.     Thus,   250 gauss is required to 

eliminate "blackout" at 150, 000 feet while 600 gauss is needed at 100, 000 

feet.     The more severe re-entry condition with u = 26, 000 fps (240 Mc) is 

shown to be qualitatively similar in Fig.   19.    At 150,000 feet,  db„ = -25. 6 

for B_ = 0; 600,   1200,   and 2650 gauss would be required to obtain -15,   -10 

and -5,   respectively.    At 100,000 feet,  db„ -  -16.8 for B    = 0,   whereas 

larger field strengths of 1200,   3600,   and 7800 gauss now are required.     If 

the allowable loss is reduced farther so that the magnitude of dbT is 4 or 

less,   the 50, 000-foot condition would be critical and even larger fields would 

be required since the corresponding curve is more gradual than the 100,000- 
9 

foot case.     Comparative values for f = 3 X 10    cps are given in Fig.   21. 

The favorable effect of an applied magnetic field on re-entry communi- 

cation is shown for a number of practical conditions of interest in the tabu- 

lated values of Fig.   18 along with Figs.   19,   20,   and 21.     A preliminary 

analysis of the boundary layer region on a 10-degree cone clearly indicates 

the existence of electron density gradients in the direction of propagation. 

The magnetic field required to provide a specified acceptable level of trans- 

mission can be reduced substantially when the more realistic inhomogeneous 

plasma is included; this will be examined later in this report. 

Blunt body-stagnation point calculations were also made for several 

typical re-entry conditions.     The assumption of a homogeneous plasma slab 

is quite appropriate in this instance.     The  stagnation condition gives rise to 
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large values of the plasma and collision frequency.    In the extreme case 
12 12 13 considered,   f    is of the order  10       cps and f    of the order  10       to 10      cps. p r c r 

With no applied magnetic field,   losses in excess of 30 db are obtained with 

frequencies of 240 Mc to 30 kMc.     Since X,   Z >> Y in this case,   even for 

Bn =  100, 000 gauss,   the magnetic  field is of no practical value.     When the 

maximum values of f    and f    are of the order of 10       cps,   transmission can p c 
be increased to "satisfactory" levels; however,   field strengths of the order 

of 50, 000 gauss would be required.     The practical use of a magnetic field 

becomes more apparent when f    <  5X  10       cps.     For f = 30 kMc significant 

improvement in transmission is derived from the application of 5 to 10, 000 

gauss while 25, 000 gauss is required for this purpose ■when f = 240 Mc.     The 

discussion is intended to be qualitative in this case and to bracket the general 

results of interest inasmuch as the use of blunted re-entry vehicles has been 

reduced greatly in recent years. 

C.     Formulation of a Meaningful Experimental Program 

The immediate purpose of an experimental program for the present 

problem is  essentially three-fold: to obtain quantitative  results on the  effect 

of an applied magnetic field on propagation,   to correlate these results with 

theory to the extent possible,   and to investigate related problem areas 

suggested by the previous theoretical considerations.     The end purpose is 

to enable prediction of propagation for several applications of interest.     In 

the  re-entry cone application,   for example,   the functional form of the  elec- 

tron density distribution may be complicated and variations in collision 

frequency may be of importance.     The theoretical problem may be compli- 

cated  further by the requirement of oblique incidence,   the practical existence 

of a nonuniform,   applied (as well as induced),   magnetic field,   and transverse 

gradients of the plasma properties.     In view of the intractable nature of such 

a problem,   as well as our inability to accurately measure or compute the 

plasma properties,   it would seem that an experimental flight program would 

be of limited general value.     Thus,   specific information could be obtained for 

a set of actual flight conditions,   but,   the results could not be generally 
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interpreted so as to evaluate theoretically some other flight case.     It would 

seem reasonable,   therefore,   to attempt a definitive controlled laboratory 

experiment.     An idealized experiment can be formulated for which analysis 

is possible.     General information can be obtained from such a correlation. 

However,   theoretical estimates; of an actual flight problem may still require 

additional laboratory experiments and analyses on the several complex 

conditions noted above. 

There are several ways in which the proposed laboratory experiment 

can be approached.     Related work has been done in the field of plasma 

diagnostics by Jahn     '        and Betchov and Fuhs,        to name a few.     The inter- 

action of microwaves with plasmas has been studied experimentally from 
59 

several points of view by Daiber and Glick,        Rao,   Verdeyen,   and 

Goldstein,        and Jones and Gould. The transmission problem has been 
62 6 "3 

examined to some extent by Lueg and Wood,        Rothmann and Morita,        and 
64 

Delosh,        as well as in several company proposals.     The shock tube has 

been used in the study of plasma diagnostics.    In addition,   shock-tube 

techniques and theory have been developed to a point where the generated 

plasma is well known.    With this basic prerequisite for the formulation of a 

meaningful experimental propagation study,  the shock tube is a good choice 

for the plasma source.     It also enables one to employ a representative 

analytical model which can be solved to interpret the experimental results. 

The homogeneous plasma slab solution can be used as a guide now in 

the initial evaluation of a possible shock-tube program.     The underlying 

physical model is appropriate for the present purpose,   and preliminary 

calculations of the boundary layer indicate that the inhomogeneous region is 

small.     Properties of shock-tube-generated plasmas (in argon) wore com- 

puted using Rofs.   65 and 66,   and are shown in Figs.   22 and 2 3.     It should be 

noted that although the collision cross sections of both the neutral atoms and 

the positive ions were included in the computation of collision frequency,   the 

author has not established that the  reference work  represents the latest infor- 

mation regarding this difficult calculation.     The data shown will bo satisfac- 

tory,   however,   for the present purpose. 
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Both the plasma and collision frequency can be varied by several orders 

of magnitude for the range of Mach numbers (6 to 9) and pressures  shown. 

Although the desired values of plasma conditions are thus readily obtained, 

the futility of even contemplating such an experimental program without the 

benefit of some preliminary analysis may be demonstrated easily.     It is not 

our purpose at this time to consider the problems involved in any detail but 

rather to employ reasonable theoretical results to aid initial thinking along 

these lines.     On this basis,   the homogeneous plasma slab analysis may be 

used to point out the following useful  results.     It is desirable when working 

with microwave  receivers,   in general,   to restrict both the transmitted and 

reflected power levels as follows: 

0. 05 5 e     < 0.95 , 0. 05<€      <0. 95 . (65) 
1 H 

At the  same time,   good experimental procedure dictates that neither very 

small nor very large gradients  in these quantities be permitted.     Hence,   we 

will also stipulate that: 

de „ dcR 

ID?        ■ d#±0-05        • <66) 

In this manner,   a minimum variation is assured for the purpose of inter- 

preting the experimental  results.     Excessively large gradients (for  example, 

near-resonant conditions) which would place an unnecessary burden on the 

results  in view of the expected errors and uncertainties of the problem are 

also  ruled out.     Imposing these  constraints on the numerical evaluation of 

Eqs.   (60) and (61),   we obtain the  results  shown in  Figs.   24 through 37. 

Figures  24 and 25 show plots of Z versus X for Y =  0 and 0. 5, 

respectively,   with L/*-n = 4.     The  corresponding  shock-tube data are 

presented,   assuming f = 24 kMc,   for an initial pressure of 1 ,   5,   and  15 cm 

and parametric values of the shock Mach number.     Transmission and 
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reflection data are not required simultaneously for diagnostic purposes, 

although the additional information thus provided is of definite value.     Both 

results are of interest,  however,   in the study of propagation,   with particular 

emphasis given to the transmission.     The acceptable regions defined by (65) 

and (66)   are clearly shown in these graphs.     The largest region of overlap in 

which both transmission and reflection data can be obtained occurs when 

p.  =  1 cm.     By the same token,   however,   the permissible range of values of 

M    is  sharply reduced for this condition.     Thus,   for Y = 0 (Fig.   24),   there is 

no overlap region for p.  =  15 cm,   while meaningful data can be expected for 

transmission when 6. 5 < M    < 7. 1 and for reflection when 7. 1 < M    < 1.7. 
s s 

For p.   =  1 cm,   the separate Mach number ranges are sharply reduced while 

an overlap region does exist for 7. 3 < M    < 7. 5.     The same qualitative trends 

are found when a magnetic field is applied.    Some overlap region appears 

when p.   =  15 cm,   for Y = 0. 5 (Fig.   25),   while transmission and reflection 

data can be obtained for the range 6. 4 < M    < 7. 2 and 7 < M    < 7. 8,   respec- 0 s s K 

tively.     Both intervals are reduced once again at p.  =1 cm,   and a somewhat 

broader overlap region of 7. 2 < M    < 7. 6 is obtained.     Thus,   the magnetic 

field tends to increase the acceptable number of shock-tube conditions in this 

case. 

Having examined the required shock tube conditions on this basis,   let 

us include the corresponding detailed propagation calculations.     In Figs.   26 

through 30, • T and «_ are plotted versus Y (or B.) for these cases.  In the 

present discussions we will assume, somewhat arbitrarily, a maximum prac- 

tical value of 10, 000 gauss.   For p.  -   15 cm, useful experimental results may 

be expected, with respect to transmission (Fig.   26), up to a Mach number of 

7. 3 (an approximate limit of X < 2 is implied).     Larger values of M   ,   and 

therefore X,   can be examined from the reflection data (Fig.   27).     The  so- 

called reversal effect,   when an increase in magnetic  field  results in a de- 

crease in t^ and an increase in eR,   is quite apparent,  and experimental 

information may be obtainable.     A qualitatively similar situation is shown in 

Figs.   28 and 29 for p    = 5 cm,  while several overlap conditions are illustrated 

in Fig.   30 with p.  =  1 cm. 
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Fixing L/\    = 4 once again,   for convenience,   we shall consider briefly 

f -  15. 8 kMc.     The propagation results remain the same since L has been 

correspondingly increased; however,   the decrease in f raises the shock-tube 

performance curves  somewhat.     The acceptable Mach number range is 

generally broadened,   as a result,   as is  seen by comparing  Figs.   31 and 32 

with 24 and 2 5,   respectively.    In addition,   the assumed maximum value of 

10, 000 gauss  now corresponds to a larger value of Y.     This is  shown in Fig. 

33,   for illustrative purposes,   which is to be  compared with Fig.   26.     With 

M    = 7. Z a larger value of X is now involved although the corresponding 

variation of «„ with B    is more pronounced.     The combination L,/\- - 2, 

f = 7. 9 kMc is examined in Figs.   34 through 37.    It is immediately apparent 

that a larger number of meaningful experimental conditions are now possible, 

as are higher values of X and Y.     Thus,   for p    =  5 cm (Fig.   34,   as compared 

with .big.   28) more values of M    can be used and a larger value of X exam- 

ined.     The obvious improvement provided by this condition is  shown further 

in Fig.   36  for p     =   I  cm. 

Preliminary consideration has been given to a possible shock-tube 

program.     The resultant analysis clearly shows the need for such calculations 

and allows us to obtain meaningful experimental conditions.     The plasma 

properties,   for argon (Figs.   22 and 23),   and therefore the corresponding 

propagation results,   arc probably too  sensitive to M    for experimental pur- 

poses.     A qualitative indication of the problem may be derived from  the 

present discussion,   and the same procedure will  be used in a more definitive 

analysis of an experimental program using other gases. 
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SECTION VI 

PRELIMINARY ANALYSIS OF THE INHOMOGENEOUS PLASMA PROBLEM 

We will be concerned in this section with the problem of examining the 

more realistic inhomogeneous plasma model.     The analyses are preliminary 

in character in that only typical quantitative effects are obtained from the 

general considerations.     It is expected that this problem will be examined 

further in some detail in the present research program. 

Consider the propagation problem governed by Eq.   (52) with the 

electron density distribution: 

X(z) = X     + (X. -  X    ) e 
co 0 co 

az 
z > 0 (a > 0) 

= X, z < 0 
(67) 

Although the exponential  profile has been examined,   especially in ionospheric 

work,   as was noted in the summary of Section III,   the above form is more 

suitable for the present purpose.     Assuming the  incident wave to be  linearly 

polarized along th:   x-axis  gives the  solution in the  region /. < 0 as: 

TT (1) r /   -2      e24l/2   , (2) r.       ,   ...2      „2.1/2   ■, ,,QA w = E    = cv     exp[ -inQ (ng    - S )       z]   + cv      exp| mn [n%    - S )       z]     ,    (68) 
'0 V"Ö 

' 

where n'x     =   1   -   mX    is the constant index of refraction (not necessarily 

free space).     In the  region  /. > 0: 

•"  + n2, JC2 -   m [X      + (X- -   X    ) e'az] 
0 ' L    ao 0 oo 

(69) 
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Introducing the substitution: 

t  -_1_0       1/2,Y        Y    vl/2      -az/2 /7n. I - -j- m (X0 -  X^) e , (70) 

we obtain Bessel's equation: 

d  w  ,   1 dw ,  ,,       a . n 0       2 v    «1/2 ,_,. 
^T+?^- + (1 -p)w = °        ' a=-i-(C   - mXJ        •       (71) 

and the solution: 

Ht) = c(3) JJft) + c(4) J n(g) (72) 

For sufficiently large z,   | « 1,   and: 

J±a(S)~S±a~e±a(-az/2) 

2 1/2 
The imaginary part of (C    - mX    ) is negative,   such that the real part 

of Q is positive; then,   since w must be finite as z -*oo,   it follows that the 
(4) upper sign must be chosen,   i.e.,   c       - 0: 

w(£) = c(3) JQ(£)        . (73) 
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( 

At 7,-0,   w and riw/dz must be continuuus,   and we obtain: 

R = 
c(2)      (n*2 - S2)1/2 - m1/2 (X0 -  XJlU J^(t)/JQ(&) 

rm ...2 XT72 ,—IT2" T7T 
(nji<    - S")1'     +m'     (X0 - X^r" J^(t)/Ja<Ü 

(74) 

-(3) 2(nf-S2)1/2Ja(e)/Ja(g  
T^ m Ja^  " 2        2 1/2 1/2 1/2 c11' (n§Z-SZ)1/2 + mWZ{Xn-Xm)1/ZJ^t)/JJ&) 

. (75) 

0 oo' a"'      av 

T| = T 
2<n,2-sV/2 

Z=°"      °_(nB
2-S2

)
1^+m

1/2(X0-Xa?)1/2J.(U/Ja(C) 

. (76) 

2in0      1/2 |v        „    . 
— m      (xo ■ xoo) 

1/2 
(77) 

Since Bessel functions of complex order and argument are not 

tabulated,   preliminary quantitative information can best be obtained by an 

examination of the limiting forms of the solution.     Using the series expansion 

for the Bessel function,   we obtain,   for: 

tl«l (78) 

R = R 
1  -  (inQ/a) 

1  + (inQ/a) 

.  ...2      „2,1/2      ,  ...2      „2.1/2 (ng    - S  ) -  (n^   - S ) 
~I2   c2,i/2 x, ...2   ~rm n*    - S  ) + (a*    - S ) 

(79) 
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T    = T 
*0 0 

1 +(2in0/a) (n*2 - S2)1/2 

i+tv^K-sV^Mn^-sV'2] 
(80) 

where R and T"_ are the limiting values for an abrupt interface separating 

two homogeneous media: 

3
2)1/2-(n*2-S2)1/2 

oo !3* 
(81) 

2(ng2- S2)1/2 

2—„2.1/2 0 2 2 1/2— (82) 

Thus,   for |X    - X    |   sufficiently small,   or a,   \  ,   Z,   or Y sufficiently 

large,   so that |t|« | >   the reflection coefficient is less than the correspond- 

ing well-known result (81) as shown in Eq.  (79). 

From the asymptotic expansion for the Bessel function or the WKB 

analysis,   it follows that (assuming 0. = 0 now,   for convenience): 

R = 

2 2 n*^  - ng  ) 
CD 

 3 2 2~ 8in0ng    + a (n*,  - ng  ) 
(83) 

T    = 
0 

8inon5 
8inQng    + a (n^  - ng   ) 

(84) 
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Although it is not necessary to be so restrictive,   it will suffice for the 

present purpose to examine the following limiting expressions.     For a 

rapidly varying exponential profile (a -* co) Eqs.   (79) and (80) reduce to 

(for %   = 0): 

(2in  n*> .        ,in„, i 

"—f5)     ■      To ■ \ I« - (T2) <"§ - »t>|     • (85) 

-      (n0 " noD) -            2n0 
R =   n" + n" >           T    -    ,.    ° A         .                               (86) n? + n ■ U      n-j- + n'1                                          '     ' 

0         oo 0         CD 

At the other extreme of a slowly varying profile (a -» 0) Eqs.   (83)  and  (84) 

reduce to: 

,   -2        .,.2. .,.2        .,.2. 
-a(n-    - nx a(n--    - nx  ) 

R= °°      3Ö , T    = 1   -        °°       36 . (87,88) 
8inono 8inono 

Rather than undertake a tedious numerical analysis of the formidable exact 

solutions,   (74)  and (76),   or the simplified expressions,   (79),   (80)  and (83), 

(84)    which would involve the parameters a,   \„,   X„,   X    ,   Z,   and Y,   an 
—      0        0       oo 

over-all measure of the influence of the inhomogeneous region can be 

derived from the limiting relations (85),   (86)  and (87),   (88).     These approxi- 

mate solutions are valid for arbitrary values of nl and n* ,   provided that 
' 0 oo    r 

a is sufficiently large in (85) and (86) and sufficiently small in (87) and (88). 

Hence,   it is clear that in the present inhomogeneous plasma boundary value 

problem,   nearly zero reflection and perfect transmission is obtained when 

the electron density is  slowly varying.     For the rapidly varying case,   the 

reflection and transmission coefficients approach the abrupt interface 

homogeneous results which may assume essentially arbitrary values, 

depending on the quantities n* and n* . 
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Additional information can be derived from the following modified 

version of the preceding boundary value problem which is particularly appro- 

priate in several laboratory applications.    If we replace (67) by: 

X(z) = XQO + (X0 - XJ e -az z > 0 (a > 0) 

= 0 z < 0 
(89) 

the corresponding expressions become: 

R 
C-min(XQ.XJl/ZJ^)/Ja(j) 

C+m1,Z(X0-Xm)1/ZJ^)/JaM 
(90) 

T(i) = 
2c ja(e)/jQ(o 

C + m1/2 (X0 - XJ1/Z ;p (£)/Ja(t) 
(91) 

P 2C  
n TT? TT?  u      C+m1/Ä(X„-X   y'C J'(C)/J  (t) 0 co a  '       a'*' 

(92) 

For    II«   : 

R = R 
1 + (inQ/a) 

1 + (in0/a) 

(n*2   - S2)1/2 (1 + Xn/X    ) - (1 - XnIX   ) C x  co ' * 0      co 0     co' 

(n*2   -S2)1/2(l+X0/Xoo)+(l-X0/Xoo)C 
(93) 

T    = T X0      10 

1  +(2inft/a) (n*2   - S2)1/2 

1  + (in0/a) [(n*2   - S2)1/2 (1 + XQ/XJ  + (1  - x'/XJ c] 
(94) 
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R = 

_      .  ,.2      „2. 1/2 C - (n*    - S ) 
 oo __^ 
~ 7 ;   ...2      „2.1/2 C + In*    - S ) oo 

,    _ 2C  
0      ^ 7 /   „2      „2.1/2 C  + (n*     -  S  ) 

OO 

(95,   96) 

In the asymptotic or WKB limit (for 0, = 0): 

R = 
1 - n5- a(nco - n5^/4inono^ 
1 +ng +a(n*;- n* ) /4inQng 

(9 7) 

T = 
0 2   .,.2, 

1 +ng + a(n*) - ng )/4inQng 
(98) 

The further requirement that a be very large or very small results 

in the following (for 9. = 0): 

i- 4 -P) («-si a-*co Tol.-^-^.-.S,)] 

1 - n=: 

1  + n* 
CO 

0      1  + n* oo 
(99,   100) 

R    "    TT^6 

,   ...2        ...2. a(n^   - ng   ) 
oo 

7—127;     Iz: 2in0ng  (1  - ng   )_ 

a-0       2 
1   + ng 1  - 

,  ...2        ...2.   ' 
a(nco   -n6 } 

4in0n§   (1  + ng) 

(101, 102) 

-51- 



Detailed calculations can be made from the exact solution or,   in a 

restrictive but far more convenient manner,   from the corresponding limiting 

expressions.    Equations ( 99 ) through (102) are valid for arbitrary values 

of Xn,   X    ,   Z,   and Y,  provided that a is sufficiently large in (99,   100) and 

sufficiently small in (101, 102).    Substantially different results obviously can 

be obtained from the rapidly varying and slowly varying cases.     The solution 

approach R and T_ in the former,  whereas in the latter the same limiting 

expressions are obtained with n*  replaced by n*. r CO        r '     o 

There are relatively few solutions of the inhomogeneous plasma 

problem that include detailed calculations of transmission and reflection. 

The similarity between Eqs.   (41) and (50) allows us to make use of one such 
21 solution,   that of Albini and Jahn. In particular,  the numerical results 

given in this paper (Bn = 0) for the more complicated slab geometry can be 

applied to the present magnetoactive problem. 

For the case of normal incidence (normal applied magnetic field) and 

a ramp profile,   a linear electron density connecting free space with a 

homogeneous medium is assumed: 

X(z) = 0 

"T" 

= P 

z < 0 

0 < z < L, 

z > L 

(103) 

It is apparent from the previous analysis of Eq.   (52) that the reflection and 

transmission coefficients obtained by Albini and Jahn will apply with a 

magnetic field present for some equivalent set of physical parameters. 

When the magnetic field is included: 

N n-'- 

=    1 

(L) = 1 - m P 

P(ITY)"1 

1 + Z2 (1TY)" 
+ i -PZ (1+ Y)'4 

 1 ^2 1  + 7,    (1+ Y 

(104) 
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2 
■b2: 1    - P(l + Yf1 

1   + Z2(l  + Y)"2 

2 d2: 1    - P(l - Y)"1 

1  + Z2(l - Y)"2 

Selecting two values of N,   labeled N    and N.,  for which the distribution 

of R and T with W^n is given by Albini and Jahn,  we must obtain the unique 

values of p,   Z,   and Y which determine the same curves in the magnetoactive 

case.    For N.  = a - ib and N    = c - id,   it follows from (104) that: £ r 

_2 
2ab =        ßZ (1 + Y) =• ,    (105, 106) 

1  + Z    (1  + Yf ^ 

_2 
2cd =  PZ-(1 " Y)- -        •      (107,108) 

1 +Z    (1 - Y) 

Clearly the solution of (105) through (108) for (P,   Z,   Y) in terms of 

the specified quantities (a, b; c, d) is not unique since there are four equations 

in three unknowns.     An additional constraint is implied which will result in 

the requirement that the choice of N    and N.  is not entirely arbitrary. 

Eliminating P from (105, 106) and (107, 108) gives rise to two equations in 

Z and Y from which we obtain: 

Y _ cd (a    - b    -  1) -  ab (c^ -  d    -   1) j (109) 

cd (a2 - b2 -  1) + ab (c2 -  d2 -  1) 

Z=         -4abcd - -         . (110) 
cd (a    - b    -  1) + ab (c    -  d2 -  1) 

In order that the derived value of p obtained from (105, 106) and (107,108) 

be unique,   it is necessary that: 

cdf(a2 -  b2 -   l)2 4 4a2b2] - ab f(c2 -  d2 -   l)2 + 4c2d2] , (111) 
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in which case ß is given by the relation, 

ß s -2ab (c    - d l)2 +4c2d2 

cd (a b2 - 1) + ab (c2 DJ 
(112) 

A specific value of N    = c -  id and a (in N    = a - ib) used by Albini and 

Jahn may be selected.     The required value of b was obtained from (111). 

Since in their graphs of | R|  versus L/X.,   for example,   a family of curves 

is presented with a fixed and b varied,   the distribution of | R. |  versus W\. 

for the derived value of N. was readily interpolated.     The variation of 

| R   |   and | R. |  with L/X-n is thus obtained,   corresponding to the values of 

Y,   Z,   and ß which are computed from Eqs.   (109),   (110),   and (112), 

respectively.    It is desirable,   of course,  to obtain the comparable results 

with no applied magnetic field.    Having determined ß and Z,  we can 

calculate N = e - if,   for Y = 0,   from the equations: 

2      2. 
e    - f 

1  + Z 
2ef = ßZ 

1 + Z 
(113, 114) 

l. e. 

(V '■,   .(*.* +A   2»"2 

■.T 
1/2 

2 

2e (115) 

Since neither e nor f is conveniently specified,   a double interpolation of the 

Albini-Jahn results is required.    Illustrative results are shown in Fig.   38 

for the condition: 

ß = X(L) = 0. 82 Z = 0. 67 Y = 1. 10 (116) 
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The limiting solution as a -» 0,   Eq.   (87),   of the semi-infinite problem 

(nx = 1) is identical with the aforementioned Albini-Jahn solution for large 

values of LAn with the corresponding terms being X      - ß and a = l/L. 

In this case (in which small values of | R|   are implied),  we obtain: 

R 
I6ir (LAJ [(1+ Y)2 + Z2]1/2 

(117) 

R 
R, 

1 + Z 

Ld + 
2 2 

Y)     + Z 

1/2 lü 
:R„ 

2
\TR7

I
       |RJ2/ 

(118) 

where R. is the reflection coefficient when Y 

as one would expect.     If Y » 1,  | R   | 

0.     For Y « 1,  eRa «R   . 

R. |« | R„|   such that 

«R « €R   ,  unless  Z is much larger than Y in which case,   eD  < € 
R R ;Rr 

If 

Y = 0(1),   then | R   |<| R   | ; whereas | R   |> | R   |   for 0 < Y < 2,   and 

I R   |< I Rj  for Y > 2.     Hence,   if Y > 2,   then e„  < e „   ,   and if 0 < Y < 2,   then 1     r'    '    0' R        Ro —      — 
eR may be less than or greater than €r>   ; i.e.,   the applied magnetic field 

actually may increase the reflected power,   depending on the value of Z. 

When Y = 1,   for example: 

H*)&*7^) 
hence,   eD » en     for Z « 1.     The effect of L/\-,   as derived above from 

R ■R 0 0' 
the Albini-Jahn calculations for the case of a linear ramp,   is illustrated in 

Fig.   38 for the condition (116).     The magnitudes of R   ,   R   ,   and R. vary 
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relative to one another depending on the value of L/X-.    Although «R is 

generally less than «p   ,   as expected e_ > ep    by an order of magnitude for 

L/V : 0. 3. Some numerical res ults are summarized in the following tab] 

L/XQ |R0I |R,I 1»  I '     r1 eR R0 

0. 1 0. 205 0. 221 0. 105 0. 030 0. 042 

0.5 0. 065 0. 065 0. 017 0.0025 0.00421 

0.8 0. 015 0.040 0. 028 0.00119 0.000225 

To evaluate the influence of a finite inhomogeneous region,   it is 

necessary to obtain the corresponding calculation of R    and R. for a 

homogeneous plasma slab of thickness L with the same physical parameters. 

It is not sufficient,   for example,  to compare the inhomogeneous medium 

calculation of | R|   for a particular value of L/^n with the corresponding 

abrupt interface result (L/X. = 0).    A principal conclusion given in the 

Albini-Jahn paper is that reflection and transmission depend strongly upon 

the width of the transition zone and,   to a lesser extent,   on the detailed 

profile of the transition.     The curves presented in their report show the 

specific influence of the transition dimension L for several profiles,   as well 

as the effect of the index of refraction of the homogeneous medium.    It is 

evident from their results,   however,   that the propagation may be strongly 

dependent on the plasma properties as well as on L,/X._.    For the magneto- 

active plasma,   therefore,   the effect of the inhomogeneous region on 

propagation may be quite pronounced under certain conditions,   even when L 

is just a fraction of the free space wavelength. 

Clearly the limited results obtained in this fashion are not adequate. 

A more detailed examination of the effect of a finite inhomogeneous region 

on propagation can be continued as follows:   Compute N    and N. from 

(105) through (108) corresponding to assigned values of X,   Y,   and Z of 

interest,   in the manner outlined by Eqs.   (113) through (115).    Reflection and 
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transmission coefficients can be obtained then from the expressions derived 

by Albini and Jahn for the ramp,   kinked ramp,   and trapezoidal profiles, 

including an applied magnetic field.    Additional solutions of (50) for other 

profiles or geometries would have to be obtained anew in the previously 

described manner.    Varying X,   Y,   Z,   and L/V. will serve to cover the 

appropriate range of plasma and magnetic field characteristics while several 

electron density profiles can be used for parametric purposes. 
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SECTION VII 

PROPAGATION IN NONUNIFORM,   MAGNETOACTIVE PLASMAS 

The magnetic   field term in the general equations (17) through (20) can 

be  spatially dependent,   as -was observed at the end of Section II.     This is 

clearly also the case lor the basic wave-like equation (22).     Only limited 

consideration has been given to  such problems.     This is due in part,   perhaps, 

to the fact that a substantial contribution to the field has been made in iono- 

spheric  research wherein the magnetic field is  essentially uniform.     In the 

re-entry flight application discussed in Section  V.   for example,   the applied 

magnetic field is expected to be nonuniform.     Therefore,   it will be necessary 

to examine the  complex problem of propagation in nonuniform magnetoactive 

plasmas.     The additional difficulty arises from the fact that any nonuniformity 

in the magnetic  field is intrinsically two or  three dimensional; hence,   the 

governing differential equations are partial  rather than ordinary. 

We shall  restrict our preliminary attention to the two-dimensional case 

in which the applied magnetic  field is in the x-z plane and d/dy =  0.     Further, 

it is assumed to be symmetrical about the z-axis such that for x = 0, 

B„     = 0 and B„     =  B_    (z) while the magnetic  field lines diverge  for xiO as 
Ox Oz Oz ö b 

illustrated in Fig.   39.     No current is introduced into the stationary plasma 

as a result of the application of such a  steady dc magnetic field.     It follows, 

since   B„    =  d/dy =  0.   that: 
Oy ' 

3Bn 3B,. 3B. 3B 
Oz   _ Ox Ox 

3x 3z 3x      " 3z 
Oz Ox Ox Oz /j j u) 
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the last equation resulting from the soienoidal character of B_.    Assuming a 

power series expansion about x = 0, we can show that: 

B0x(x,Z) = g(-l) 
n=0 

d(2n+l)B     ( 
n+1 0z '     x 

dz (2n+l) f2n~ + 1)! 

co d'     ' Bn  (0, z)      2n 
B0z(x,z) . B0z(0,z, + £ (-!,» g ^ 

__i dz       ' '      ' n=l 

> (120) 

If we let: 

oo 

E.(x, z) =   V E-   (z)^n 
l / *     in 

n=0 

co 
///.(x,z)=£///.n(z)xn 

n=0 

(121) 

where i = x,   y,   z,   it  follows from Eqs.   (17),   (18),   (21),  (120),   and (121) 

that,   to zeroth order in x,  the ordinary differential equations (48) apply.    In 

this approximation,   one can demonstrate,   therefore,   the effect of a variable 

Y. (z).     The effect of some curvature in the magnetic field lines due to the 

component Y™ and,   therefore,   some dependence on x can be obtained from 

the first-order terms in the expansions (121),   provided that the quantities 

dB_   (0, z)/dz and d   BQZ(0, z)/dz    are of order one,   or that the products 

[dB.  (0, z)/dz]x and (d^B.  (0,z)/dz Jx    are sufficiently small.     In solving for 

the higher order terms,   it will be necessary to appropriately order the 

plasma properties X and Z. 

Although Eqs.   (48) are clearly more complicated when Y.   is a function 

of z than for the case of a variable X previously considered,   preliminary 
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results can be derived based on the above expansion procedure.     It is 

reasonable to assume,   for the present purpose,   that the applied magnetic 

field is of the form: 

YJz> = V a > 0 (122) 

For z > 0: 

F"  + n. XL      [TY0exP'-az)]( 
u)1" u / F = 0 U >> Y„e (123) 

Introducing the  substitution: 

.       2n0 Xl/2 ,_„   .1/2     -az/2 
+ = —If      (*V      e (124) 

we obtain the general solution: 

F= c(3) Jß(4,) + c(4) J_p(4,) 
2in„ ^ 1/2      2in  n* 

*(«-«) 
(125) 

where n* is the index of refraction with zero applied magnetic field.     For 

sufficiently large z,   I)J < <  1 ,   and: 

T     r.|        i*P (±ß)(-az/2) J±p(^) ~  ^        ""   e 

Since the imaginary part of n* is negative,   Re ß  > 0,   and the upper  sign must 

be chosen in order  to satisfy the boundary condition at z = oo: 

FW) = c(3) Jß(40 (126) 
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We shall assume the region z < 0 to be free space and the incident wave 

linearly polarized along the x-axis.     Hence: 

«    » U)      "in°Z  x      (2)     ln0Z , ^   A M?71 F(z) = c1      e + cx      e , for z < 0 . (127) 

Applying the boundary conditions at z = 0,   we obtain: 

c(2)       1 + i(X1/2/U)(=FY0)1/2 Jjj(*)/Jp(0) 
R = -7-T-r =  YT? TV?  • (128) 

c11'      1 - i(Xw*/U)(*Y0)x" J^(0)/Jp(0) 

2J  (4<)/J  (0) 

T(+)-  j^ g ^ — ' (129) 

1 - i(XI/Z/U)(=FYQ)l/^ Jj,(#)/Jp(#) 

T(z = 0) = Tn =  r7^ 1~^m • (130) 
0      1  -i(X1/2/U)(=FY0)1/2 Jp(0)/Jp(0) 

2nn  x1/2 i/2 
^TT-lV • (131> 

For    *   < <  1, 

/I  - ngV jl  -[(in0/a)(TY0)(l + n*)]/U(l + 2in0n*/a)| 

-\l +n*/|i  -[in0/a)(TY0)(l - n*)]/U(l + 2inQn$/a) j 

T0 = (l +ng) jl +[in0/a)(TY0)(l  - n*)]/U(l + 2in0n*/a)J ' (133) 

Since   |Y    exp(-az)j < <   |u| ,   it follows that  |^| < < 1 provided that, 

|(2nQ/a)X1/2/(T Y0)1/2|  is of order one,   or smaller. 
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In the asymptotic or WKB limit: 

R 
1   - n* + aX(TYJ/4innU2n*Z 

 c        0 0 c 

1 + n* - aX(TYJ/4in„U2n*2 

c 0 0c 

(134) 

0      1 + n* - aX(=FYJ/4innU2n*2 

c 0 0c 

(135) 

where the index of refraction: 

»H-t^r-M^f U  >> Y, (136) 

l 
characterizes the uniform magnetoactive problem.     It follows that: 

Rat°° R 1  - 
2in0ng(TY0y 

aU 
R 

1  ' n0 
1+n* 

(137) 

0 0 

inox<TYo) ' 
U2a(l + n*) 

T„ = 
0      1 + ng 

(138) 

R a^° R* 1 + 
aX(TYQ) 

2in„n-   Uli- n*  I 
0  c        v c  '.J 

R* 
1   - n* 
 C 

1 + n* 
(139) 

T 
ar° T* 

0 0 
1 + 

aX{TY0) 

4innn*2U2(l + a*) 
0   c c 

x* 
0       1  + n ■■ 

(140) 
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Specific calculations can be made readily using the limiting expressions 

(132) through (136),   which cover a reasonably broad range of conditions. 

Equations (132) and (133) are appropriate,   for example,   if Y    is the same 

order of magnitude as X,   and if a is the order of 4TT/X   ,   or larger.    It is 

apparent from the simplified relations (137) through (140),  however,   that if 

the field is  slowly varying,   the solution approaches the constant magnetic 

field results R* and T*      By contrast,   for a rapidly varying field,   the 

solution approaches R and T. in which there is no effect of the applied 

magnetic field.     This general observation is a clear indication of the possible 

substantial importance of a nonuniform,   applied,  magnetic field.    A broad 

indication of this type is consistent with the present purpose.     Further anal- 

ysis of the initial expansion procedure,   including a plasma slab geometry, 

for example,  would be required before a detailed quantitative analysis would 

be warranted.     It appears that an experimental investigation of this problem 

may be feasible after the initial study described earlier in this report has 

been completed. 

The analysis for a nonuniform,   applied,   magnetic field is dependent, 

certainly,   on the character of the nonuniformiry.    In the present discussion, 

this nonuniformity is due to the application of a magnetic field which is of the 

type one might reasonably expect to use to improve transmission in actual 

flight applications.     The preliminary consideration of a formal expansion 

procedure resulted in a general evaluation of the effect of a longitudinal 

variable magnetic field.     A more complete treatment of the partial differ- 

ential equations is outlined so as to account for the distortion of the wave 

forms resulting from the dependence of the index of refraction on x.    Other 

forms of a nonuniform,   applied,   magnetic field may be postulated.     It should 

be remarked also that even when Y ^ Y.   = constant,   the interaction of the 

flow with the applied magnetic field results in an induced nonuniformity in the 

field as well as inhomogeneities in the medium.     In the magnetogasdynamic 

sense,   these perturbations generally are expected to be small.    It may be 

shown readily,   however,   that small changes in the thermodynamic properties 

of the gas,   and therefore in the plasma properties,   or small,   induced non- 

uniformities in the magnetic field may be of significance in several applications 

of interest. 
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SECTION VIII 

SUMMARY 

The basic equations governing the propagation of electromagnetic waves 

in inhomogeneous,   dissipative,   nonuniform,   magnetoactive plasmas are 

derived in Section II.    A review of the present state of the art for plane 

harmonic waves is presented in Sections III and IV.     The plasma is assumed 

to be homogeneous in the former,   and the essential features of ray theory 

are discussed along with the limiting condition as prescribed by the WKB 

approximation.     In Section IV,   the general inhomogeneous plasma problem is 

described.     Some consideration is given to the magneto-ionic coupling theory 

for a stratified medium assuming constant collision frequency and an arbi- 

trary orientation of the uniform,   applied magnetic field.     Particular emphasis 

is placed,   however,   on the problem of propagation across an abrupt plane 

(z = 0) interface into an inhomogeneous plasma region where the incident 

wave may be oblique (its wave normal in the x-z plane) if there is no applied 

magnetic field but must be normal in the uniform,   magnetoactive problem. 

The governing ordinary differential equations are derived with the magnetic 

field in the x-z plane; however,   detailed consideration is given to the problem 

in which the field is applied in the direction of propagation,   i. e. ,   normal to 

the interface. 

Exact solutions for a number of assumed functional forms of the index 

of refraction are summarized along with various boundary value problems 

that have been considered.     The utility of these formal solutions is limited 

by the difficulty encountered in abstracting numerical results.     Detailed 

calculations have been made,   therefore,   in only a few instances.    As is 

usually the case when analytical expressions are available,   however,   con- 

siderable information can be obtained from the limiting forms of these 

solutions.     Numerical and approximate analytical procedures are discussed 
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which may be used to obtain solutions for more complicated forms of the 

index of refraction or in the analysis of more general propagation problems 

referred to above.     The reader is referred to the bibliographies and reviews 

of Brekhovskikh,        Spence,        Evans,        and Owens,        as well as to those 

already cited in the text,   for a more general treatment of the propagation 

problem as well as additional references. 

Mention should be made,   at least in the summary,   of ionospheric 

research with regard to the propagation of Whistlers.     Whistlers are low- 

frequency electromagnetic wave packets that propagate along magnetic lines 

in the ionosphere.     They are of possible interest for the present purpose 

since the appropriate frequency ratios,   X > Y » 1,   are of the same order of 

magnitude as were found in several applications discussed in this report. 

Although Whistler theory may,   therefore,   be applied to a certain extent in 

such cases,   it is unfortunately not too far advanced.    Current work is 

primarily concerned with ray propagation.     The transmission of wave packets 

and their group velocity is analyzed.     This is used in the study of trans- 

mission of momentary disturbances such as electromagnetic radiation from 

lightning bolts in the atmosphere,   the source of atmospheric  Whistlers.    Use 

of ray theory in regimes of large Y,   where Whistlers propagate, is 

generally found to be valid when the medium properties,   and therefore the 

electromagnetic fields,   are slowly varying.    Although full wave solutions 

have been found for propagation at oblique angles to uniform magnetic fields, 

the manner in which the electromagnetic waves propagate along the magnetic 

lines is not always clear.     Reference has been made to the paper of French, 
54 Cloutier,   and Bachynski,        in which the existence of very low-frequency 

"windows" due to the ion cyclotron mode was pointed out.     This also has 

been observed in the study of Whistlers and may be of definite interest in the 
4 71 

present study.    Additional detail is given,   for example,   by Budden,     Hines, 
72 73 Gallet,        and Hoffman. 

The present preliminary analysis of the effect of an applied magnetic 

field on propagation is contained in Sections V through VII.     The initial 

quantitative treatment of the problem was made in Section V using the 
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simplified model of a homogeneous plasma slab,   assuming normal incidence 

and normal applied,   uniform,   magnetic field.     A detailed parametric calcu- 

lation of transmission and reflection was made for a wide range of values of 

X,   Z,   Y,   and L/^n-    Illustrative transmission results are given in Figs.   3 

through 16.     It is apparent immediately that the manner in which the mag- 

netic field affects transmission is dependent upon a number of significant 

parameters.     The size of the field is obviously a factor,   but so,   for example, 

are the values of db™,   X,   Z,   L/X._,   and f involved.     The combined effect of 

all of the parameters is discussed in detail in Subsection A. 

It is clear,   however,   that substantial improvement in transmission 

generally can be derived from the application of reasonable field strengths 

for moderately overdense plasmas.     This is also the case when X >> 1 pro- 

vided that one accepts as much as 1 0 to 20 db degradation in the transmitted 

signal,   in contrast to the requirement of,   at times,   an impractical order of 

magnitude larger field when near-complete transmission is considered. 

Several exemplary re-entry situations were analyzed in the second subsection. 

The problem of a 10-degree half-angle cone is summarized in Fig.   17,   and 

corresponding transmission results are given in Figs.   18 through 21.     The 

effect of the magnetic field in eliminating blackout is discussed for the flight 

conditions and signal frequencies  considered   assuming   several   different 

levels of acceptable transmission.     It should be noted that a preliminary 

analysis of the boundary layer on a 10-degree cone clearly indicates the 

existence of electron density gradients in the direction of propagation.     The 

magnetic field required to provide a specified acceptable level of transmission 

can be  reduced substantially when the more  realistic inhomogeneous plasma 

is considered,   as is demonstrated in Section VI.    An experimental shock-tube 

program is briefly analyzed at the conclusion of this section.    Although the 

resultant range of conditions (f    and f   ) which may thus be obtained using 

argon is satisfactory,   their dependence on the shock Mach number appears 

to be too strong for acceptable experimental work.     A qualitative appreciation 

of the problem may be obtained from this discussion,   however,   and the pro- 

cedure will be repeated using other gases in subsequent detailed studies of 
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the program.    It is at once clear from the theoretical calculations that an 

arbitrary choice of shock-tube conditions could lead easily to the collection 

of virtually meaningless experimental results.    Using the solution for eT and 

«R with the constraints that these quantities and their derivatives with 

respect to X be within   prescribed bounds,   we have found that the possible 

experimental conditions (M  ,   p. ) are well delineated;   this is vividly demon- 

strated in Figs.   24,   25,   31,   and 32.    The variation of «T and «R with Bn for 

these conditions is shown in Figs.   26 through 30 and 33 through 37. 

It was noted above that the variation of db_ with Y becomes more 

gradual for lower values of dbT,   particularly when X » 1.    It follows that 

such effects as plasma inhomogeneities and nonuniformities in the magnetic 

field,   even if they are relatively small,   can be of considerable practical 

importance.    A less accurate theoretical calculation of db_ may result in a 

significant error in the prediction of the applied magnetic field requirement 

which is subject to definite practical limitations.    In Fig.  4b,   for example, 

for X = 100,   a 25-percent decrease in the value of dbT (for 10 db or less) 

would result in at least a 50-percent increase in one's estimate of the field 

strength.    The use of a homogeneous plasma slab model for the analysis of a 

re-entry cone could easily produce such errors in the prediction of db_. 

Hence,   the more realistic inhomogeneous plasma slab model is considered 

in Section VI.    An exponential distribution of electron density is assumed. 

The plasma is taken to be semi-infinite in extent,   a simplifying assumption 

that is appropriate in certain laboratory applications but is considerably 

more approximate in the flight applications of present interest.     Exact 

solutions to two boundary value problems are obtained involving Bessel 

functions of the first kind with complex order and argument.     Considerably 

simplified expressions are obtained from the small and large argument 

expansions of the solutions.     The over-all effect of the inhomogeneity is 

immediately evident,   however,   since the limiting expression for a large 

electron density gradient approaches the well-known homogeneous result, 

whereas substantially different values may be obtained from the corresponding 

case in which the gradients are small.    Quantitative results of the effect of an 
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applied magnetic field on the  reflected power for the inhomogeneous plasma 

problem are obtained using the solution (87),   i. e. ,   for a — 0 (taking nx =1). 

This is identical to the solution for a linear ramp in the limit of large L/X... 

The relative size of ' R   |,    | R. j,   and  | R« |  will vary depending on the values 

of Z and Y.     Although E      is generally less than ej^   ,   as expected,   the applied 

magnetic field actually can increase the reflected power.     Indeed,   it is found 

that for Y = 1,   t _  >> e R    when Z « 1.     The effect of L/V« is derived from 
R "•() Ü 

the Albini-Jahn calculations for the case of a linear ramp and is illustrated 

in Fig.   38 for one set of values of ß,    Z,   and Y.     The reflected energy depends 

on L/\n,   and although it is generally smaller in the magnetoactive case,   it is 

interesting to note that for L/\ = 0. 8,   eR  > f p^    by an order of magnitude. 

A preliminary analysis of propagation in a semi-infinite,   homogeneous, 

nonuniform,   magnetoactive plasma is made in Section VII.     The incident wave 

is normal to the free space-plasma interface (z = Ü),   and the magnetic field 

is applied in the x-z plane,   symmetrical about the z-axis,   as shown in 

Fig.   39,   where B„   (0, z) = 0 and £>„   (0, z) = B«   (z).    Such a geometry is a 

reasonable approximation to what one might expect in actual flight applications 

of the use of magnetic fields to improve transmission.    A formal expansion 

procedure in powers of x is proposed which,   to order zero,   reduces to the 

usual ordinary differential equation (50) in which the magnetic field has only 

a variable longitudinal component.    Assuming that Y. (z) = Y_e  c    (a > 0), 

Y.   <<   jul,    this boundary value problem is  solved in terms of Bessel 

functions of the first kind of complex order and argument.     The limiting 

forms of this  solution for small and large values of the argument are also 

derived.     A general observation of the possible  significance of the nonuni- 

formity can be determined from the expression for the case of a slowly 

varying and rapidly varying field strength.     In the former limit,   the solution 

approaches  the corresponding constant magnetic field result,   while  in the 

latter case the favorable effect of the magnetic  field is essentially lost.     The 

fact that applied magnetic fields will not be uniform in such applications, 

along with the fact that the magnetogasdynamic effect will induce nonuni- 

formities  in the field (as well as plasma inhomogeneities),   requires that this 

complicated problem be given further consideration. 
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SECTION IX 

FIGURES 

Fig.   1.    Propagation geometry 
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Fig.    3a.     db>T versus Y for homogeneous plasma slab;   L/X„  =  1,   Z  = 0. 1 

-73- 



o o o 
o" o 

(—1 

w 

K 

— + 
o > 

■ 1 H (/> 
N o a. 

O 

-|« X 
to 

.J" o 
ID 
in 

3 
O 

II D» fO 

O 
1  o JU O TJ 

M 

1- 

CD 

o o o 

o o o 

o o 

o 
II 

o 

■a 

o o 

V) 

o 

s 
0) 
CO 
o 

o 
§ 

o o 
0 

h 
o 

in 

h 

> 
H 

T3 

CO 

-74- 



-100 

-O.I 

JbT ■   '0  logl0 [i (|Tr|
2   + W)] 

(B0> 
(gouss-cps) 

X = 100 

X =25 

X = 2.25 

•X= 1.21 

6 a 
x 

10 

Fig.    4a.     db.r versus Y for homogeneous  plasma slab;  1al\~  =   1.   7.-1 

• 75- 



o 
o 
o 
o 
o 

, , 
M 

*^ 
t- 

■- 

+ 
_ V 

II H V) 

N <r> o <J 

_|N X 

' ' i£> 3 

II 

o 
9 

-S1 

o 

-*M O "O 

it 
0> 

K- 

8 
o 
o 

o 
o 
o 

o 
o 

n 
N 

o 

fl 

m 
3 
C 

a 
M 
0 
E 
o 
A 
u 
o 

en 

o 
> 
h 

■a 

XI 
-r 

M 
•i-i 

fa 

J I L I    i. J_l L 
o 
8 § 

o 
I 

Lqp 

-76- 



25 

20 

Z   -   0.01 

'i(M2 + M,)1 

0>— 
o 4 6 

y 

Fig.   D.     X versus  Y  for homogeneous  plasma slab;  W\n   = 0- 5,   Z  =  0.01 
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Fig.   14.     X versus Y for homogeneous plasma slab; WX.„ =4,   Z = 0.01 
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Fig.   39.    Nonuniform applied magnetic field geometry 
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